Department of Defense Archives - Page 4 of 7 - Inside GNSS - Global Navigation Satellite Systems Engineering, Policy, and Design

April 9, 2020

NATO Software Estimates Areas of Degraded GNSS Service

Experts at the NATO Communications and Information (NCI) Agency have developed a software-based tool that can estimate the area where an interfering signal would degrade or deny GNSS signals, and assess the scale of the interfering signal and its potential impact on operations. Principally of interest are jamming or spoofing attacks on GPS or Galileo, of course.

The Radar Electromagnetic and Communication Coverage Tool (REACT), was sponsored by the NATO Navigation and Identification Programme of Work. It serves as a proof-of-concept of how analytical tools could support the execution of operations. The tool is also available to NATO Nations free of charge. For now, the software is only used for trial and experimentation.

NATO REACT, photo courtesy NCI
NATO REACT, photo courtesy NCI

To use the software, operators input information on the particular jammers – their locations and technical characteristics — and the software produces a map of the area where the interfering signals would degrade or deny GNSS receivers. This can be displayed on the NATO Core Geographical Information System (GIS) map.

The next phase of the project focuses on ensuring the software can work on NATO classified networks, which would make it more available to operational commands to test and ensure such support measures are properly integrated into NATO operations.

The software and its estimations were demonstrated to operators during exercise Trident Jupiter 2019, part 1, to collect their feedback. The exercise gathered 3,000 military and civilian personnel as participants, evaluators and observers. Thirty NATO member and partner nations participated in nine different exercise locations across Europe.

“Ten consecutive twelve-hour working days and a relentless, ever-increasing, battle-rhythm tempo came to an end as Exercise Trident Jupiter 2019-1 (TRJU19-1) reached completion on Thursday, Nov. 14, 2019,” the agency stated.

TRJU19 was the largest and most complex exercise planned and executed by the Alliance’s Joint Warfare Centre to date. TRJU19-2 took place in March 2020.

“NATO’s adversaries have the ability to degrade or deny GPS-enabled capabilities,” said Jean-Philippe Saulay, a NATO Navigation and Identification Officer. “NATO must take appropriate measures to ensure Allied forces can operate in a degraded or denied environment.”

“NATO must maintain superiority in the electromagnetic environment, including but not limited to, positioning, navigation and timing services,” said Dr Enrico Casini, Communications and Navigation Engineer at the NCI Agency. “Situational awareness of navigation systems in a contested electromagnetic environment contributes to that superiority. NATO is enhancing its knowledge of electronic warfare technology,” Dr Casini said. “The electromagnetic environment has become even more contested in recent years. One aspect of that is interference with GNSS systems.”

Photos courtesy NATO Communications and Information Agency.

By Inside GNSS
March 31, 2020

GPS Ground, Space, User Segments and Cyber Security Move Forward Together

GPS got a twofer on March 27 with major advances for the ground segment and the space segment. The Contingency Operations (COps) program, an upgrade necessary to the Operational Control System for it to command and control the new GPS III satellites, was approved. And the second GPS III satellite to orbit was approved, a stage that should shortly be followed by it  becoming available to military and civilian users.

Both steps occurred upon receiving the U.S. Space Force’s Operational Acceptance approval.

COps has operated on a trial basis since last October, supporting the developmental testing of the GPS III ground and space capabilities. The trial period culminated in a fully mission capable rating from the Air Force Operational Test and Evaluation Center’s Operational Utility Evaluation.

GPS SV02 launched on Aug. 22, 2019, and upon completing its test, COps took control of it, bringing it into the III fold along with its earlier sibling, GPS III SV01. Administering COps and in direct control of both satellites is the 2nd Space Operations Squadron at Schreiver Air Force Base, Colorado.

“Of all the programs that will be delivered this year, there are few that carry with it as significant an impact to the warfighter and civilian users as [COps] will. This is truly a remarkable leap forward for the GPS enterprise and the capability it provides, and I couldn’t be more proud of the team that came together to make it happen,” said Lt. Col. Stephen Toth, 2nd Space Operations Squadron commander.

Lockheed Martin built both satellites as well as the COps command and control program. The company is under contract to build up to 32 of the new generation and its follow-on version, carrying new technology and advanced capabilities in payloads made by L3Harris. The military advances aboard these satellites include the new military M-code, and COps is necessary to administer this signal.

19 previously orbited IIR-M and IIF generation GPS satellites can broadcast M-Code, as can GPS III SV01 and SV02. The third M-code enabled GPS III satellite should launch in April of this year. The military is getting very close to full M-code capability, which will occur when 24 orbiting satellites have it. Its operational availability is on track for 2020.

User Equipment Not Far Behind

The M-Code Early Use (MCEU) upgrade, delivered earlier this year, is a key part of COps, enabling the system to task, upload and monitor M-Code within the GPS constellation. It also supports testing and fielding of modernized user equipment, prior to the completion of the next-generation ground control system, or OCX.

The M-Code encrypted GPS signal enhances anti-jamming and protection from spoofing, and increases secure access for U.S. and allied military forces.

A key to enabling M-Code is a new software-defined receiver Lockheed Martin developed and is installing at all six Space Force monitoring sites. The M-Code Monitor Station Technology Capability receives and monitors M-Code signals.

Red Dragon Breathes Cyber Security

Finally, Lockheed Martin als0 delivered the Red Dragon Cybersecurity Suite (RDCSS) Phase III upgrade during the fourth quarter of 2019, dramatically improving Defensive Cyber Operations (DCO) visibility into GPS network traffic. Other add-ons include user behavior analytics to analyze patterns of traffic and network taps to improve data collections.

“GPS is an attractive target for our adversaries, so it was critical we bring our best cybersecurity defenses to the table,” said Stacy Kubicek, Vice President of Mission Solutions Defense and Security.

[Image above: Capt. Adam Moody, 2nd Space Operations Squadron Global Positioning System Operations Support flight commander, and Staff Sgt. Carl Ellinger, 2 SOPS GPS mission chief, review a checklist of procedures for a transfer operation at Schriever Air Force Base, Colorado (U.S. Air Force photo/Dennis Rogers)]

By Inside GNSS
March 3, 2020

Air and Space Forces Want $100s of Millions More for GPS-related Priority Projects

When the White House submits its budget request for the Department of Defense to Congress every year, that is not the final word. The different military services also send Congress their unfunded priority lists, which detail the projects the White House chose to forego but, the services hope, Congress will add back in. This year several of those priorities are GPS-related.

Read More >

By Dee Ann Divis
February 5, 2020

Details Emerge On Ligado Decision Delay

The chairman of the Federal Communications Commission (FCC) told two U.S. Senators in January that his agency could not complete a decision on Ligado Network’s license modification by the end of 2019 because of a late-in-the-year response from a key federal agency.

Read More >

By Dee Ann Divis
January 2, 2020

Bootstrapping Location for Army Patrols

Forward-deployed U.S. military personnel will soon benefit from warfighter localization sensor units that provide tracking information in GPS-denied environments in a bootstrap mode. The Army Product Manager Sets, Kits Outfits and Tools awarded a $16.5 million contract to Robotic Research of Clarksburg, Maryland for WarLoc units to equip four deployed U.S. Army Brigade Combat Teams in various locations. The first batch of systems has already been shipped, and should enable soldiers on foot to keep track of each other in terrain where GPS systems are less effective.

WarLoc provides localization and positioning data for teams of warfighters or first responders in signal-denied environments such as underground facilities and inside buildings and mega-cities, according to the company. The small sensor mounts on footwear. Multiple systems work together to further enhance accuracy and maintain the localization of teams.

[Heel-mounted warfighter localization sensor units, also known as WarLoc. Photo: Robotic Research.]

The tracking system augments its GPS receiver with an inertial measurement unit. The device connects with a smartphone through Bluetooth. Robotic Research fields two form factors of the WaLoc, one mounted over the top of the boot and another that wraps around the heel. Users view data readouts through an Android-based Tactical Assault Kit. The algorithms are reportedly robust to communications failures and dropouts, and the distributed nature works well in challenging communication environments.

 

 

By Inside GNSS
IGM_e-news_subscribe