B: Applications

January 3, 2008

Unmanned Air Vehicles

Once we tried to Google “UAV” and got more than two million citations on the Internet.

Try to find the definition of unmanned aerial vehicle (UAV) and you’ll uncover a welter of choices in the literature. So, let’s just say that a UAV is an aerial vehicle capable of sustained flight without the need for a human operator onboard.

Once we tried to Google “UAV” and got more than two million citations on the Internet.

Try to find the definition of unmanned aerial vehicle (UAV) and you’ll uncover a welter of choices in the literature. So, let’s just say that a UAV is an aerial vehicle capable of sustained flight without the need for a human operator onboard.

Although unmanned aerial vehicles (UAVs) are mostly used in military applications nowadays, the UAVs can also perform such scientific, public safety, and commercial tasks as data and image acquisition of disaster areas, map building, communication relays, search and rescue, traffic surveillance, and so on.

A UAV can be remotely controlled, semi-autonomous, autonomous, or a combination of these, capable of performing as many tasks as you can imagine, including saving your life. Nowadays, UAVs perform a variety of tasks in both military and civil/commercial markets. Indeed, many different types of UAVs exist with different capabilities responding to different user needs.

The purpose of this column is to give the reader an overview of the large number of existing UAV systems and R&D projects as well as the practical challenges facing UAV designers and applications.

. . .

Conclusions

A surprising and seemingly vast number of different types of UAVs exist in the literature, with different capabilities responding to different user needs. We have reviewed the four main categories: MAV/Mini UAVs; Tactical UAVs; Strategic and special task UAVS. MAV/mini UAVs represent the smallest class of UAVs and are mostly used for civil applications. Strategic UAVs are the largest and mostly used in military applications. Although the tactical and strategic UAVs are the more used, in the meantime MAVs and Mini UAVs will become more practical and prevalent.

Different kinds of UAV platforms have different mission and applications. For instance, most research institute prefers rotary wing UAVs with vertical take off and landing capacities as test platforms for demonstrating their research subjects. International competitions such as the Aerial Robotic competition organized by AUVSI are very important, not only as a good way to promote and share research results but also to understand what is going on in the field of UAVs.

As we said before, it is unreasonable to know all the ins and outs of UAVs. That is why one can say: Once we tried to “Google” UAV, we are still Googling UAV,” and . . . we haven’t found the end yet!

(For the rest of this story, please download the complete article using the PDF link above.)

By

China GNSS 101

Late last year, I attended China’s only government-sanctioned international conference on GNSS and visited a number of local companies. I came to one conclusion: The world of GNSS is about to change, and China will have a lot to do with that.

Consider this: China has launched its own GNSS system, Compass/Beidou. It has liberalized policies on GNSS receivers and navigable digital maps. It is already one of the world’s largest economies with enormous capital reserves and steadily-growing disposable income in the hands of millions of citizens.

Late last year, I attended China’s only government-sanctioned international conference on GNSS and visited a number of local companies. I came to one conclusion: The world of GNSS is about to change, and China will have a lot to do with that.

Consider this: China has launched its own GNSS system, Compass/Beidou. It has liberalized policies on GNSS receivers and navigable digital maps. It is already one of the world’s largest economies with enormous capital reserves and steadily-growing disposable income in the hands of millions of citizens.

As a GNSS player, the People’s Republic of China (PRC) arouses interest and concern on at least four levels: as a service provider (compatible or incompatible?), as an equipment manufacturer (competitor or partner?), as a product designer and technology distributor (re-engineering or innovation?), and as an enormous market of largely untapped potential (closed or open?).

In their own fashion, of course, every other GNSS provider brings the same set of questions and, like China, a distinct way of answering them. The real questions are what lessons has China learned from the world’s 30-year experience with GNSS and how will it apply those lessons to the nation’s emerging role of GNSS provider, designer, manufacturer, and marketplace.

One measure of that can be taken from increasingly public, though still carefully scripted statements on the subject from Chinese public officials and industry leaders.

NaviForum: Beidou’s Debut
The Shanghai Navigation Forum (NaviForum) bills itself as the only international GNSS exhibition and conference officially approved by the Chinese government, which is also deeply involved with the organization of the event.

(Sponsors included the Department of High & New Technology Development and Industrialization, Ministry of Science & Technology (MOST); Department of Map Management, State Bureau of Surveying & Mapping (SBSM); and the Science & Technology Commission of the, Shanghai Municipal People’s Government.)

Its fourth annual staging in December 2007 drew more than 700 attendees, with 29 percent coming from outside China, according to conference organizers. And it was, in many respects, a coming out party for Compass, which is also widely known by its Chinese pinyin (alphabetized) name, Beidou.

As with GPS and Russia’s GLONASS systems, Compass began as a military program operated by China’s defense mapping agency and, as with those other two GNSSes, will continue to have a military component. Several geostationary satellites were launched beginning in 2000, broadcasting on a center frequency of 2491.75 MHz in a small slice of spectrum allocated for radiodetermination/mobile satellite.

Until late in 2006, it appeared that Compass/Beidou would remain a regional system, augmenting full-fledged GNSSes. A 2003 agreement committed China to investing €200 million ($290 million) in cooperative development of the European Union’s Galileo system.

In October 2006, however, China announced that it would build a full-fledged GNSS system that would transmit signals in the L1 band where GPS and Galileo military and public safety services are located. Then, last April 14 China launched a middle-earth orbiting (MEO) satellite and quickly began broadcasting signals.

The Compass signals were soon analyzed by researchers at Stanford University and Belgian GNSS receiver manufacturer Septentrio, who published articles in the July/August 2007 issue of Inside GNSS describing their findings.

Subsequently, in a break with a previously restrained public posture on the subject, several representatives from the China Satellite Navigation Engineering Center described the program in some detail at NaviForum 2007. In another session, “New Positioning System,” European and Chinese public and industry panelists focused on Compass. And throughout the conference, Chinese speakers referred repeatedly and favorably to the domestic GNSS system.

Something Old, Something New
Much of the information revealed in the Shanghai meeting merely confirmed what had already been published by outside researchers: L-band signals centered at 1561.098 MHz ± 2.046 MHz (Beidou 1 or B1, overlaying the Galileo E2 band and part of the GPS L1) and 1589.742 MHz (B1-2 on Galileo E1 and the upper portion of GPS L1); 1207.14 MHz ±12 MHz (B2, E5b), and 1268.52 ±12 MHz (B3, on the lower portion of E6).

B1/B1-2 signals would use quadrature phase shift keying (QPSK) and binary offset carrier (BOC) modulations similar to those employed by GPS and Galileo on those frequencies, according to Yang Qiangwen, senior engineer, China Satellite Navigation Project Center (CSNPC, also sometimes referred to as the engineering center) in the Beijing region. The signals will have a pseudorandom noise (PRN) code chipping rate of 2.046 Mcps and a minimum received power level of -163 dBW.

Several of the speakers, however, also provided further insight into Compass and China’s ambitious plans for the system. Ran Chengqi, the CSNPC deputy director speaking in place of the center’s director, Yang Changfeng, told the NaviForum audience that open services would be operated at L1 and L5.

He also emphasized the need for compatibility and interoperability with other GNSS systems, saying, “China will work with the other GNSS providers under UN International Committee on GNSS (ICG) rules.”

“Beidou is a huge investment,” Ran said. “We need to be very careful in its implementation and look at the risks in the market. Our goal is a long-term commitment to users.

He underlined the system’s “strategic role,” adding, “although Beidou has made a fast start, we still need to commit our resources to make sure. We need more open industrial policies,” alluding to the promised publication of a public Interface Control Document (ICD) that would specify Compass’s technical parameters so that receiver manufacturers could build user equipment confidently.

“We have to build up [Compass/Beidou] awareness and our own brand in the world,” Ran concluded. “An open, prosperous, and strong China will develop based on an open, strong, and healthy navigation system.”

In a plenary session speech, Liao Xiao-han, deputy director of High & New Technology Development and Industry, Ministry of Science and Technology (MOST), said, “After completion of Compass, we believe it will be the major supplier of positioning, navigation, and timing [PNT] in China and also a significant supplier of PNT in the world.”

Liao emphasized the need to make Compass “compatible and interoperable with GPS and Galileo” by working to share common frequencies and avoid interference on limited GNSS bandwidth.

Meanwhile, he added, “We are working with Galileo to create synergy,” he said, “We want to expand the PNT footprint.”

According to several speakers, Beidou will be providing a regional service over the east Asia region by 2009 and a global service later at an indeterminate date. Beidou’s open services will be offered without “entrance or authorization fees.”

In the New Positioning System session, Yang reported that the CSNPC would provide an open and free ICD on its website “in the very near future,” admitting, however, that the website was still under development. Compass operators have a “very detailed plan for future beyond 2009,” which would be released along with a launch schedule – also “in the very near future,” he said.

In tests of Beidou’s signals conducted August 21–30, 2007, the CSNPC found an average 0.5 meter residual ranging error and a one-meter sequential error in the MEO satellite’s orbital positions based on comparisons with satellite laser ranging to the satellite. (to see Table 1 and Figure 1, which illustrate this point, download the article pdf above.) The on-board clock error was 5 nanoseconds over 3 hours, and 11 nanoseconds in the course of 24 hours.

Industry on Parade
A well-attended exhibition accompanying the conference drew a couple of dozen Chinese and foreign companies and public agencies. These included the country’s first GNSS company to issue public shares of stock (and the provider of services for the first phase of Beidou), Beijing BDStar Navigation Co., Ltd. Although organizations representing the automotive, portable navigation, and telecom sectors dominated the exhibit, Beijing UniStrong, which plans on entering the U.S. survey market, also was represented.

Underlining the Shanghai region’s generally accepted status as the economic center of China, Chen Kehong, vice-chairman of the Shanghai Municipality’s Science and Technology Commission, described the region’s 14-station differential GPS network.

“In the future, would like to see incorporate multiple [GNSS] systems [into the DGPS network], including Beidou.” Chen said that the regional government would like to see such services based on market rather than planned economy.

“The Shanghai municipal government will move Beidou into the application industry chain,” he added. “We will spare no effort to implement Beidou services and technology development.”

In a corresponding show of bureaucratic support for commercial development, Li Yongxiong, director general of the Department of Map Management, State Bureau of Surveying and Mapping (SBSM), described efforts to liberalize China’s regulatory policies on access to data with which create navigable map databases.

Eleven companies approved by central government to product digital maps with maps currently available from six Chinese companies. These cover every city in China except two, and 95 percent of all of highways, according to Li.

Available mapbases incorporate 5 million points of interest and 1.8 million miles of highways and expressways at 1:10,000 scale. The SBSM is “working very hard on 1:2,000 scale databases in urban areas,” for which the agency would like to create a system to provide real-time updates.

(Articles in future issues of Inside GNSS will return to the subject of China’s domestic GNSS design and manufacturing sector as well as the effect of Compass/Beidou’s development on the world’s other GNSS systems.)

By
January 2, 2008

Geospatial Fusion on the Fly

(The following online version is text only. To see graphs, charts, and images, download the article pdf above.)

The development of GNSS worldwide has fundamentally changed the way many professions conduct their business.

Arguably, the profession of surveying has been most affected because surveyors, at their core, are experts at measurement. For millennia they have been the first to take advantage of any new technology that improves their ability to locate objects accurately.

(The following online version is text only. To see graphs, charts, and images, download the article pdf above.)

The development of GNSS worldwide has fundamentally changed the way many professions conduct their business.

Arguably, the profession of surveying has been most affected because surveyors, at their core, are experts at measurement. For millennia they have been the first to take advantage of any new technology that improves their ability to locate objects accurately.

Until recently, the landmass of Alaska has had little in the way of either control networks or boundary surveys. This is why GNSS has been a godsend for our company, Tanana Chiefs Conference (TCC).

TCC is a nonprofit corporation that primarily consolidates medical and social services for 42 small Alaska Native villages located in remote, mostly roadless regions of the interior. However, we also employ a small group of professional surveyors whose ongoing task is to lay out boundaries for the Alaska Native Claims Settlement Act (ANCSA) village and regional corporations.

These surveys, covering thousands of square miles each summer, are part of a much larger 35-year effort by the United States Bureau of Land Management to delineate government and tribal land claims throughout the state.

In the days before GNSS, an ANCSA project required a major expedition each year to hire surveyors, assemble the equipment and supplies, and mobilize for a survey based in some distant village. It took up to six crews of surveyors and helpers, an office staff of five or six, and a DC-3 full of tripods, total stations, and chainsaws.

Today, 15 years later and with sophisticated GNSS equipment, we get by with a lot less. The results are more accurate and trustworthy, and only a single person is needed to run the surveying office, which consists of a laptop computer.

Villages without Boundaries

Although GNSS has solved many difficulties of large-scale remote surveys, it hasn’t been nearly as helpful at the local level. The villages where our crews are based each field season are scattered over 235,000 square miles — a region slightly smaller than Texas.

These villages generally have a few boundary problems of their own and always a subdivision or two that needs to be surveyed. In remote Alaska, flying in a survey crew is very expensive, and few villages can afford it, so little has gotten done over the years in the way of addressing village boundaries. To be helpful, our company generally donates a week of what we call VTS (village triage surveying) to the various places we visit.

Unfortunately, once we get there, the local work is time consuming because traditional field methods are needed for much of the control and design work. For example, Athabascan villages are communal in nature and rarely contain fences that divide housing and possessions. A good deal of time is needed to locate everything in sight and figure out who owns what. Moreover, original boundary markers are scarce, and hours are spent digging up old axles and snowmobile parts in an effort to uncover the few remaining survey monuments.

It occurred to us that aerial photography might be a worthwhile tool to make our efforts more useful to the locals in the short time we had. For example, if a subdivision could be designed not from a weeklong topographic survey, but from a table-sized, high-resolution orthophotograph, it would save a lot of time and trouble.

Most villages in interior Alaska have been aerially photographed at one time or another, but timely orthophotography is rare, and the resolution of even the best photos — about one pixel per foot — is less accurate than needed. To distinguish the incredible variety of objects scattered throughout a village, something in the range of two to three centimeters per pixel (about half the width of a soda can) would be more useful.

Although new photogrammetric techniques make this high resolution achievable, commissioning new low-altitude photography and the associated expedition – a very expensive undertaking — is not an option for these distant villages.

Off the Shelf Solutions?

We were naïve enough to think that, with a little experimentation, we could achieve these results with off-the-shelf consumer equipment. After all, we had an available helicopter that was used for U.S. Bureau of Land Management (BLM) work, and high-resolution, 10- to 20-megapixel consumer cameras were just now appearing on the marketplace.

It sounded simple enough, why not rectify a series of hi-res, low-altitude digital photos taken from our helicopter?

However, spending a little time investigating this idea only demonstrated how little we knew about photogrammetry. The process wasn’t nearly as easy as we thought. We almost abandoned the idea, but, once again, GNSS saved the day and provided the key to a solution that made everything work.

Digital aerial photography cameras are precise and complex instruments and cost upwards of $500,000. Their large 23×23-centimeter charge-coupled device (CCD) array must be tightly calibrated in conjunction with a fixed camera lens to compute distortion values unique to each camera.

Based on this calibration, software algorithms can then warp each pixel exactly the right amount to remove the lens distortion, which, in turn, allows for pixel matching and the creation of accurate digital terrain models (DTMs) from stereo pairs of georeferenced photos. The calibration repeatability in these cameras is so high that accurate orthophoto mosaics can be assembled using relatively few photo control points on the ground.

A consumer-grade camera, however, even a good one, is not designed for this tight a tolerance. Although such cameras’ lens characteristics can be calibrated, the repeatability is diminished as even a slight change in alignment— say, due to a tiny machining error in a lens bayonet mount — can change the calibration values each time the camera is used.

As important as the camera is the software. Dedicated, full-featured photogrammetric suites are used to rectify digital aerial photos—but these start at a major-league price of $50,000.

Then we came up with a possible alternative.

In recent years relatively inexpensive photo-modeling software has appeared in the marketplace. This software is capable of making accurate 3D models of anything that can be photographed — something as small as a Neolithic human footprint preserved in shale or as large as the ornate façade of a medieval church. It is also commonly used to reconstruct automobile accident scenes, creating 3D computer models for forensic evidence.

In spite of the smaller scale of such subjects, the photo-modeling software shares the same mathematical principles used by dedicated photogrammetry suites. So we explored this idea. Some searching on the World Wide Web led to the discovery of a 3D photo-modeling software used primarily by architects and archeologists.

Although created as companion software to be bundled with an imaging total station, the software can also serve as a stand-alone product that can manipulate any set of controlled stereo pairs — a pair of images containing a minimum number of corresponding photo control points with accurate x, y, and z coordinates. The program is designed to work with tiny, circular photo targets, which can be automatically registered with an order of magnitude greater precision than the human eye.

The technique can produce remarkably accurate results, but, as always, there is no free lunch. To compensate for the looser reliability of lens calibration on small format digital cameras, the software requires a denser network of photo control targets. The total station with which the photo modeling software is usually paired, for example, can populate its digital photos with scores of accurate data measurements for use by the software.

This photo control requirement has relegated photo-modeling software to working in small confined areas. Theoretically, however, it should also work on a larger scale if sufficient photo control is available.

So, it was tempting to think that, with the eight dual-frequency GPS/GLONASS receivers we normally employ in BLM surveys and a few rented four-wheelers, the requisite photo control could be readily established on a village scale. (I imagined survey crews scooting around on ATVs, scattering small aerial targets in their wake like Frisbees, each measured to sub-centimeter accuracy using on-the-fly GNSS!)

Upriver for a Real Test

The Alaska summer is short. We barely had time to fly a test mission with the helicopter and work out altitude, camera settings, and target sizes before we needed to get under way.

Our first real trial took place at Huslia, a village on the Koyukuk River about 10 days by barge from Fairbanks. This river flows from the south flank of the Arctic Divide through broad, glacially carved valleys in the rugged Endicott Mountains of Alaska’s Central Brooks Range.

The Huslia village council had requested a new subdivision survey because about half the residents lived in a still-unsurveyed portion of town. In this congested central village space, subdivision lots must be custom designed using polygonal shapes to conform to each tenant’s use and occupancy. The polygon lots are separated by a chaotic layout of existing roads and trails.

This was exactly the type of situation we had in mind for aerial surveying, but the timing was rather tight. Only a week earlier we had ordered the software from Nick Russill, managing director of TerraDat UK Ltd., a geophysical consulting and contracting company based in Cardiff, Wales. Nick had generously volunteered to help us with the Huslia project because the photo-modeling software has a learning curve, and the giga-pixel, square-kilometer aerial survey would be pushing this modeling software into uncharted territory.

The software package was delayed in transit, however; so, at the last minute Nick changed his travel plans, jumped on a flight to Alaska, and hand-delivered the software.

He arrived by helicopter, intercepting our survey barge, Seloohge, on the Koyukuk River about a day’s voyage below the village. Talk about customer support!

The following morning, as the barge neared Huslia, the crews crowded into the Seloohge’s pilot boat and sped away with a stack of homemade targets that consisted of several dozen 18 inch diameter white vinyl disks packed with beach sand. At the village it didn’t take long to rent a few ATVs from which to scatter the targets, and, by the time we arrived with the big boat, about two hours later, all the requisite photo control was in place.

The targets were roughly distributed in open areas at 80–100-meter spacing throughout the site. As soon as the targets were placed, they were measured to sub-centimeter accuracy using dual baseline, stop-and-go GPS techniques, consuming another one to two hours.

Soon thereafter, Nick and I found ourselves hovering 1,200 feet above the village in a helicopter with the rear door removed. Compared to traditional aerial photography, the technique was definitely low-tech. The camera and stabilizing gyro were suspended from a bungee cord looped around the neck of the photographer, who then leaned out the door, pointed the camera straight down with an outstretched hand, and took photos every second or so as the aircraft slowly flew parallel strips across the village.

Although we soon learned that an onboard guidance system utilizing preprogrammed routes would be more efficient and provide for consistent coverage, this first effort relied entirely on the pilot’s ability to fly parallel routes based on observed ground features, a task more difficult than it sounds. The resolution of the imaging at Huslia topped out at six centimeters per pixel but subsequent improvements in our camera handling techniques improved this to three centimeters per pixel.

The digital camera was then calibrated using a companion program of the photo-modeling software. The program automatically computed the lens distortion parameters by analyzing a series of photographs taken from various angles of a target grid, an E-sized plot of a .dxf image file (included with the software) that we had carefully taped to the galley window of the barge.

Next, choosing 14 photos from our overflight of the village that provided the best overlapping coverage, Nick guided me through the stereo pair registration, measurement of control and tie points, and the creation of a DTM. The process is fairly straightforward once a host of various keyboard shortcuts are mastered.

The software maintains a point data file which can be quickly populated with the adjusted x, y, and z coordinates of the aerial targets. Stereo pairs, selected from a set of two photos that contain roughly 60 percent common overlap, are oriented by the identification of a minimum of four aerial targets visible in both images, plus an additional four to six tie points. Tie points are distinct, uncoordinated points, such as a white food bowl in a dog yard, which can be positively identified on each photograph.

The software automatically matches pixels at a selected tie point and will either accept it or reject it based on the certainty of the match in the corresponding photo. As each pair of tie points are identified, the accuracy of all the points can be examined with a network bundle adjustment routine.

The creation of a digital terrain model, a three-dimensional surface model of the overlapping area contained within the stereo pair, is a little more problematic as it relies on user input to identify breakline positions that are required to assist the software in making accurate pixel matching and elevation determinations.

Breaklines, which are drawn as polylines, are placed where sudden breaks in terrain exist, such as a ditch at the edge of a road or where the ground meets the wall of a house. Photogrammetrists rely on stereo imaging displays for this time-consuming process which manages to be both tedious and frustrating. Fortunately, for those of us using a laptop without a stereo display, the modeling software contains a useful workaround by supplying an auto-correlater that assists the operator with the exact placement of each corresponding polyline vertex.

By late afternoon we had a product: a mosaic of orthophotos held together with cellophane tape that was then proudly displayed on a big table in front of a lively crowd at the village council office. The resolution of the mosaic was such that an observer could easily pick out the smallest objects, and the villagers had no trouble identifying each other’s possessions as we sketched in new lot lines. Visible power poles and overhead wires helped with creation of utility easements.

After dinner, the marked-up photo mosaic was imaged in computer-aided drafting software, and vectors were created to match the layout. Point coordinates were identified for each lot corner position in the subdivision, exported into GPS receivers and, the following day, using real-time kinematic (RTK) techniques our survey crews set the monuments that defined the new subdivision.

The approximate accuracy of the resulting boundary monuments produced 1:50,000 closures, basically the sub-centimeter accuracy one would expect from dual-frequency, differential GNSS measurements. Note that the accuracy of the surveyed monumentation is independent of the accuracy of the aerial photo. In only two days we had accomplished what used to take a week of hard work, and at the same time we created a
very useful product for future land planning in Huslia village.

Low-Cost Accuracy

Of all the things we learned from this experiment, what surprised me the most was the accuracy of the orthophoto. A bundle adjustment of the control and tie points generated error ellipses well within the subpixel range, a fact verified by quality control checks comparing GNSS measured features with corresponding photo locations.

Without doubt it is the dense network of precisely measured control points that allows for this exactness, by constraining the photography like tacks on a board. A field-generated, high-resolution orthophoto of this accuracy could be a powerful new tool for surveyors.

The speed, precision, and reliability of GNSS-measured target networks, combined with the development of high-resolution small-format cameras and well-designed photo modeling software, now makes this possible.

What began as an idea to make pro bono work in the villages more efficient is now opening doors for revenue-generating enterprises such as accurate terrain modeling of mining, development and environmental sites, and low-cost, high-resolution, confined area photo-mapping for projects such as road intersections, construction sites, and siting and layout of resorts.

This is just one example of how the development of GNSS, surveying, and the technology of measurement – and the village of Huslia — have benefited in more ways than had been anticipated.

By
[uam_ad id="183541"]
December 10, 2007

China to Reveal Compass Plans ‘Soon’

Liao Xiaohan, Deputy Director-General of High & New Technology Development and Industrialization, MOST

China will release details of its Compass (or Beidou 2) program “soon,” including an Interface Control Document (ICD) for the GNSS system’s open civil service and a launch schedule for additional satellites, according to representatives of the China Satellite Navigation Engineering Center speaking at the Shanghai Navigation Forum (NaviForum) in Shanghai on Thursday and Friday (December 6-7).

Read More >

By Glen Gibbons
December 3, 2007

Measuring Up: Certification Processes and Testing of A-GPS Equipped Cellular Phones

More and more GPS-enabled devices are entering the consumer marketplace, many incorporating assisted-GPS (A-GPS) technology. These include not only cellular phones, but laptop datacards, PDAs, and other mobile equipment.

Increasingly, GPS devices that were previously standalone now incorporate a cellular modem for such applications as mapping download or live traffic alerts. The proliferation of GPS in the consumer space can also be seen in the availability of GPS automotive navigation systems in local supermarkets or large grocery stores.

More and more GPS-enabled devices are entering the consumer marketplace, many incorporating assisted-GPS (A-GPS) technology. These include not only cellular phones, but laptop datacards, PDAs, and other mobile equipment.

Increasingly, GPS devices that were previously standalone now incorporate a cellular modem for such applications as mapping download or live traffic alerts. The proliferation of GPS in the consumer space can also be seen in the availability of GPS automotive navigation systems in local supermarkets or large grocery stores.

Those who purchase these products expect the technology to function everywhere, continuously, be simple to use and to always have the most obscure address in its database.

To help ensure the successful deployment of this concept in cellular devices, the telecommunications industry’s standards and certification bodies have been working diligently on a standardized approach to A-GPS certification.

In recent years, the subject of A-GPS, its purpose, and operation, has gotten a lot of attention in the technical and trade media. The authors of these various sources have focused on either the technical details or on the performance of the technology in the areas for which it was or was not primarily designed.

For example, performance in urban canyons and indoor environments or development and testing by manufacturers, cellular network operators or research organizations of products using this technology.

In contrast, this paper focuses on how a mobile device that incorporates A-GPS technology gains certification for use on a 2G or 3G (GSM or UMTS) cellular network.

(For the rest of this story, please download the complete article using the link above.)

By

24-Channel OEM Board

Hemisphere GPS has released its Eclipse L1/L2 GPS OEM receiver module and evaluation kit. The 24-channel Eclipse technology delivers dual-frequency solutions (L1 (CA), L1 (P), L2 (P) with carrier phase signal tracking) with a 20 Hz maximum update rate. The unit incorporates Hemisphere GPS’s exclusive techniques for reducing code measurement noise and mitigating multipath signals.

Read More >

By Inside GNSS
[uam_ad id="183541"]
December 1, 2007

Active GNSS Networks and the Benefits of Combined GPS + Galileo Positioning

Without question GPS has revolutionized precise positioning since its advent about 20 years ago. Real-time methods to quickly fix carrier phase integer ambiguities — the key to precision — have been developed and are often referred to as RTK (“real-time kinematic”) techniques.

Without question GPS has revolutionized precise positioning since its advent about 20 years ago. Real-time methods to quickly fix carrier phase integer ambiguities — the key to precision — have been developed and are often referred to as RTK (“real-time kinematic”) techniques.

RTK is an advanced manifestation of the principle of differential positioning, a method that requires at least one reference station with known coordinates to simultaneously track GNSS satellite signals. Carrier phase measurements are used in addition to pseudoranges due to their superior accuracy.

Nevertheless, ambiguity resolution is only possible as long as the user (the “roving receiver”) is located in the vicinity of this reference station — let us say, within a radius of approximately 10 kilometers. Within this short range the benefits of the often-employed “double differences” technique can be effectively exploited: Differences of observations between a primary and a secondary satellite are formed on both the rover and the reference site and these two quantities are then subtracted, yielding a derived measurement between both sites that is free of satellite and receiver clock offsets or errors.

Fortunately, the atmospheric errors are spatially correlated and can be reduced in the double difference measurements to a reasonable extent. Thus, it is relatively easy to fix ambiguities of short baselines, whereas it becomes increasingly difficult to do so over longer baselines due to decorrelation of the atmospheric delays.

As a result of this decorrelation, the service area of conventional RTK systems allowing for quick ambiguity fixing covers about 300 square kilometers. To provide service in an area the size of the contiguous United States (9,800,000 square kilometers) would require more than 30,000 reference stations. Even for a country as small as Germany (357,000 square kilometers) more than 1,100 reference sites would still be needed to provide complete coverage — an enormous challenge in terms of infrastructure installation, operations, and maintenance costs.

The solution for this problem: Use multiple reference stations to derive atmospheric corrections. Because the coordinates of these fixed stations can be determined precisely — or can be treated as tight constraints — the atmospheric (ionospheric and tropospheric) effects on GNSS signal propagation can be derived from the correlated data.

These station-, baseline-, or satellite-specific corrections can be interpolated at the rover site. Hence, atmospheric errors can be significantly reduced and GNSS reference networks can substantially increase the distance between stations while still providing the accuracy level on conventional RTK systems.

The reference networks that provide such correction data are often called “active GNSS networks,” referring to their continuous operation. Most of them offer both real-time and post-processing services.

By adding to the number of satellite signals available to these networks, users on the road/in the field can improve their performance by allowing optimization of satellite geometry (the selection of a subset of available signals that reduces the dilution of precision (DOP) factor), use of multiple frequencies for carrier phase integer ambiguity resolution, and for achieving so-called “overdetermined solutions.” With multiple GNSS systems under development in addition to GPS that are increasingly compatible or even interoperable, this prospective approach is becoming ever more attractive.

This article outlines the added value from combined GPS+Galileo data processing — rather than GPS-only data processing — in the framework of active GNSS network positioning. In particular, we will look at how such an approach can improve performance in the presence of traveling ionospheric disturbances that produce marked increases or decreases of signal propagation delays.

(For the rest of this story, please download the complete article using the link above.)

By

John W. Betz

John W. Betz developed the binary offset carrier modulation and participated in the design of modernized signals including GPS M code and L1C. He contributed to aspects of receiver processing for modernized signals and a range of systems engineering activities in support of GPS modernization.

He has participated in bilateral discussions between the United States and the European Community, Japan, Russia, and other nations, and helped improve compatibility and interoperability of current and future GNSSs.

Read More >

By Inside GNSS
November 26, 2007

Zupt Portable Inertial Nav Unit

Zupt offers B-PINS, a high-precision surveying system incorporating inertial sensors and optional RTK GPS/INS integration. Designed to provide positioning and navigation in GPS-denied areas, such as in dense vegetation or in urban canyons, B-PINS includes data fusion software, a handheld data collector (Recon PDA), Li Ion batteries, and a rugged backpack. Applications include land seismic surveys, military or tactical GPS operations, and emergency or disaster response. Zupt, LLC, Houston, Texas.

Read More >

By Glen Gibbons

Trimble Snares USCG DGPS Contract; NDGPS Imperiled

Even as the fate of the inland portions of the Nationwide Differential GPS (NDGPS) reference network hangs in the balance, the U.S. Coast Guard (USCG) has awarded a contract to Trimble for up to 400 high-accuracy GPS reference receivers.

The Trimble NetRS reference receivers will be installed over the next three years as part of the coast guard’s modernization of the Maritime DGPS Service, which is not part of the NDGPS elements that being considered for termination.

Read More >

By Glen Gibbons
November 25, 2007

Congress Pares GPS III Funds, Slams Air Force Space Acquisition Efforts (updated 11/28/07)

The GPS III modernization program came up short in the 2008 fiscal year (FY08) Department of Defense (DoD) appropriations bill signed into law by President Bush on November 13.

In passing H.R. 3222, Congress reduced the president’s request by $100 million to $487.23 million for the budgetary year ending next October 1.

Military GPS M-code user equipment (MUE) did better, however: gaining $63.2 million on Capitol Hill, over and above the $93.27 proposed in the administration’s budget, for a total of $156.47 million.

Read More >

By Glen Gibbons
IGM_e-news_subscribe