B: Applications

DoT Seeks Help from Receiver Manufacturers to Decide on GPS SVN49 Mitigation

[Updated March 27] The first of two  teleconferences hosted by the GPS Wing underlined the U.S. Air Force’s desire to gain greater participation by manufacturers of user equipment in sorting out the options for mitigating the effects of a signal anomaly on the GPS satellite known as SVN49.

The March 26 teleconference, held on the same day as publication of a notice in the Federal Register inviting public comment on nine possible options for dealing with the anomaly, drew only a handful of participants. But the U.S. Department of Transportation Research and Innovative Technology Administration (RITA), which issued the invitation, and the GPS Wing, which has the lead in implementing an eventual decision, hope to see further industry participation in written comments and a second teleconference planned for April 30.

Read More >

By Inside GNSS

Elizabeth Cannon: Geomatics Innovator

UPDATE: On March 24, 2010, Elizabeth Cannon was appointed president of the University of Calgary. Scheduled to take office on July 1, she is the first woman to hold the position.

If anyone can synchronize micro-satellites to fly in formation, it’s Elizabeth Cannon – geomatics engineer extraordinaire, leading researcher, technology transfer virtuoso, dean of the University of Calgary’s Schulich School of Engineering in Canada’s engineering capital.

UPDATE: On March 24, 2010, Elizabeth Cannon was appointed president of the University of Calgary. Scheduled to take office on July 1, she is the first woman to hold the position.

If anyone can synchronize micro-satellites to fly in formation, it’s Elizabeth Cannon – geomatics engineer extraordinaire, leading researcher, technology transfer virtuoso, dean of the University of Calgary’s Schulich School of Engineering in Canada’s engineering capital.

And, not least, a mentor to many — including a number of bright women engineering students who will benefit from the strategies Cannon is developing to increase their numbers in science and industry.

Cannon’s trademark is taking an inexpensive device that already exists and finding a new use for it that raises the bar for accuracy in navigation. For example, Cannon’s imaginative use of equipment available on most new cars — odometers, gyros, and the steering angle sensor—produced a patent-pending system that can be used to automatically avoid collisions and improve control of vehicle stability

At 45, she has transformed technologies in ways that reach almost everyone.

From the moment she first encountered GPS as a summer student at Calgary’s Nortech Surveys in 1983, Cannon was hooked on the concept of using signals from space to precisely measure things on the ground. Since then, her self-described “addiction to accuracy” has spurred development of novel satellite-based positioning methods, software, and applications including indoor location, automobile positioning systems, precision farming, and remote sensing.

“Ten years ago, I don’t think I would have predicted where we are today,” Cannon says. “What’s exciting is you’ve got the GPS signals being enhanced, new signals being transmitted from space via GALILEO and the enhancement of GLONASS, and now the Chinese are developing a system.”

Inventor

Cannon’s ability to move discoveries from lab to market has resulted in two patents (and one more pending) plus a state-of-the-art product line that includes coauthoring nine GPS software packages used by more than 200 agencies worldwide.

Commercialized by a university subsidiary, University Technologies International (UTI), these innovations already have returned significant licensing income to the University. What’s more, many of Cannon’s graduate students are recognized as co-inventors and share in the financial benefits from licensing fees.

Three recent projects provide a window on the scope of Cannon’s research enterprise

Precise vehicle positioning system. Cannon’s team used GPS/INS with built-in onboard sensors on a passenger vehicle to achieve centimeter accuracies in urban and suburban areas.

“This a major challenge given the tough environment and the need for lower-cost sensors,” she says. “We have developed a real-time system that can deliver centimeter-level accuracies with GPS outages up to 10-20 seconds.”

Cannon’s imaginative use of built-in equipment (odometers, gyros, and the steering angle sensor) produced a patent-pending system that has been transferred to industry for market development.

Assisted GPS Under Various Aiding Scenarios. At the other end of the spectrum, Cannon’s group has looked at assisted GPS, in which various siding parameters were provided to a high sensitivity GPS receiver, in order to determine the impact of different parameters on acquisition and tracking performance.

“What really counts is being able to track signals in weak signal environments, around trees or indoors,” Cannon says. “We are looking at information that can be provided to your GPS unit through the cellular network.”

Simulator and field tests are being performed using hardware support from SiRF Technology, a prominent GNSS innovator in creating technologies that confer “location awareness” or “location intelligence” to a wide range of consumer products.

Formation Flying of Micro-satellites Using GPS. Initially, Cannon’s lab used their software simulation environment to test the use of carrier phase GPS for inter-satellite positioning and formation flying. Now the focus has shifted to using a hardware simulator to develop algorithms and test the system under various operating conditions.

“You want to have a certain configuration with a certain spacing from one another, to the centimeter or sub-centimeter level,” Cannon explains. “The next ultimate goal is to use it in space.”

When that breakthrough is achieved, the way will open for new applications that can be expected to drive GNSS-assisted technologies to even higher levels of precision and accuracy. Possible benefits include improved methods of tracking global climate change. How long will it take? “We’re probably a couple of years away,” Cannon says.

The work is being done in conjunction with the Space Flight Laboratory at the University of Toronto’s Institute for Aerospace Studies.

A Natural Scientist

Born to parents with science backgrounds, Cannon’s affinity for mathematics and the sciences was unfettered from the start. As a junior high student in Charlottetown, the seaside capital of Prince Edward Island, Cannon knew science was her calling.

When she discovered GPS, Cannon’s course was set. She quickly earned three degrees in geomatics engineering at the University of Calgary. Her international reputation as a top GPS trainer and researcher was cemented long before she defended her doctoral thesis.

Change Agent

To date, Cannon’s impact on life as we know it encompasses four broad areas extending well beyond her contributions to satellite navigation research and development. In broad brush strokes, she is recognized internationally for

  • Helping shape the research agenda through directorships and memberships in key corporate, research and scientific organizations.
  • Spearheading progress at the international level through her leadership roles in the U.S.-based Institute of Navigation (ION).
  • Developing successful strategies for increasing the number of women at all levels of academics and industry, and
  • Communicating the value of research, and of science and technology in general, to society.

In fact, the list of honors recognizing the excellence of Cannon’s research, teaching, and service covers three pages, single-spaced, in eleven-point type.

She is a Fellow of the Royal Society of Canada and the Canadian Academy of Engineering, She was listed as one of Canada’s “Top 40 Under 40” in 1998. She is the Schulich School of Engineering’s first female dean.

But one award in particular signals the history-making caliber of Cannon’s work: in 2001 she became the first woman to receive the Institute of Navigation’s most prestigious honor, the Johannes Kepler Award.

A Willing Role Model

Less than five percent of Canada’s engineering students were women when Cannon earned her first bachelor’s degree in mathematics at Acadia University in 1982. Though the percentage of women studying engineering has grown to 18 percent in Canada, equalizing the gender balance remains a top priority.

In the United States, the National Science Foundation’s updates on the status of women lump engineers together with all women in science, including the physical, mathematical, computer, environmental, life, and social sciences and psychology. Even with the inclusion of a number of disciplines where women are better represented, the most recent figures show women holding just 28 percent of U.S. faculty positions and 18 percent of full professor posts for engineering and science combined.

These comparatively low numbers are prompting U.S. lawmakers to consider whether cultural factors are continuing to dampen the advancement of women in these areas. In Russia and China, for example, women comprise a much higher percentage of engineers and scientists.

”When you go into a field, you are there because you want to be there, but others look at you and expect you to be a role model,” Cannon says. It is an expectation that she has embraced as passionately – and pragmatically – as she does the pursuit of accuracy in navigation.

“Making sure young women know what the opportunities are and helping them make informed choices is what it’s about,” she says. “I enjoy that, because it’s a way of giving back.”

A Life in Balance

If multi-tasking were an Olympic sport, Cannon would be the odds-on favorite for the gold medal. How does she manage?

“It’s a balancing act,” she acknowledges. “I’m very fortunate that my husband is extremely supportive. We’re really a team, and we’ve tried to integrate our children into what we do.”

Looking ahead, Cannon sees no end to the stream of innovation arising from satellite navigation.

“GPS is still magical in that it keeps us intrigued,” she says. “The demands on technology to provide accuracy anywhere, at low cost, under a huge range of operating conditions, presents never-ending challenges to research and creativity.”

Cannon’s Coordinates
Latitude = 51° 04’ 47.83343”
Longitude = 114° 08’ 01.85354”
Height = 1118.592 m

COMPASS POINTS

Engineering Specialties
Algorithm and software development, system integration

Her Compass Points

  • My husband, Gérard Lachapelle, who also works in GNSS
  • Our two kids – Sara and René
  • My network of wonderful women friends
  • Time alone to reflect and recharge

Favorite Equation
The Kalman filter update equation:
x+ = x + K(z – Hx)
where
x+ state vector after update
x predicted state vector
K Kalman gain matrix
z measurement vector
H design matrix

When She Fell in Love with GNSS
1984. I was working on some of the early GPS carrier phase software developed by Ben Remondi and Clyde Goad at NGS. This was a great experience as so few people were working at this level of accuracy at that time. There was lots to learn and you had a sense that GPS was poised to become something really big!

GNSS Event That Most Signified That GNSS Has “Arrived”
When my friends brag about having GPS in their Blackberries!

Engineering Mentor
My mother, who was a science graduate and became a high school math and science teacher.

Influences of Engineering on Her Non-work Life
Being at a university where I am dean of engineering, it actually consumes my life!

Popular Notions About GNSS That Most Annoy
That it works anywhere to a centimeter!

Favorite Non-GNSS Activities
Running and reading.

What is the next “big” thing?
New signals in space that will drive performance and new applications.

Human Engineering is a regular feature that highlights some of the personalities behind the technologies, products, and programs of the GNSS community. We welcome readers’ recommendations for future profiles. Contact Glen Gibbons, glen@insidegnss.com.

By
March 12, 2010

Bright Ideas Welcome at 2010 European Satellite Navigation Competition

European Satellite Navigation Competition Awards 2009

The European Satellite Navigation Competition (Galileo Masters), now in its seventh year, is seeking the best ideas for satellite navigation applications from companies, entrepreneurs, research institutes, universities, and individuals. Prizes total more than €500,000.

The 2010 contest begins on May 1, when competitors may register and submit their ideas online at the secure ESNC website. It closes on July 31.

Read More >

By Inside GNSS
[uam_ad id="183541"]
February 26, 2010

Raytheon Wins $1.5-Billion GPS OCX Contract

Raytheon Corporation graphic

Officials from the Space and Missile Systems Center’s Global Positioning Systems Wing announced today (February 25) the award of the Next Generation GPS Control Segment (OCX) contract to Raytheon Company, Intelligence & Information Systems, Aurora, Colorado.

With a baseline duration of 73 months, the OCX development contract has option years for sustainment worth a potential total of $1,535,147,916. Raytheon teammates include Boeing, ITT, Braxton Technologies, Infinity Systems Engineering, and the Jet Propulsion Laboratory.

Read More >

By Inside GNSS
February 24, 2010

2010 International Symposium on GPS/GNSS

The theme of the 2010 International Symposium on GPS/GNSS is "At a Turning Point." It will take place at Howard International House in Taipei, Taiwan on October 26-28.

National Cheng Kung University is organizing and hosting the event. The symposium will be held in English.

The annual forum is open to innovative ideas on GNSS systems, techniques, applications and opportunities by researchers and engineers from academia and industry.

Read More >

By Inside GNSS
[uam_ad id="183541"]
February 16, 2010

Ready to Navigate!

After three decades of increasingly widespread use, satellite navigation-based services have changed significantly, especially for general users in the mass market. New technology enablers such as assisted GPS (A-GPS), the use of massively parallel correlation, and the application of advanced positioning techniques have significantly enhanced the time-to-first-fix (TTFF) and sensitivity of today’s receivers.

Read More >

By
February 15, 2010

1 Antenna, 3 Dimensions

SNUGL team members: From left to right, Byungjoon Park (BJ Hobby Craft), Jihoon Kim, Prof. Changdon Kee, Am Cho, Bosung Kim, Dongkeon Kim, Noha Park, Sanghoon Jeon, and Donghwan Bae

GPS has been widely used as a navigation sensor for numerous applications including unmanned aerial vehicles (UAVs). Many researchers have devoted considerable efforts to expand the role of GPS in guidance, navigation and control to determining an aircraft’s attitude. That would enable us to use a GPS receiver as a sensor for an automatic control system as well as a navigation sensor.

Read More >

By

Wide-Area RTK

A common assumption in real-time kinematic (RTK) techniques is that the differential ionospheric delay between a GNSS transmitter and each of the roving or reference receivers is negligible. However, increased position uncertainty — spatial decorrelation — is usually allocated to the baseline receivers as baseline distances increase.

A refinement of this assumption comes with the network RTK (NRTK) using a set of permanent receivers to mitigate atmospheric dependent effects, such as the ionospheric delay, over distance.

Read More >

By

Taking Positioning Indoors

Wireless local area networks (WLANs), popularly known as Wi-Fi, were originally designed for data applications. Over the past decade or so, WLAN infrastructure has been implemented for high-speed wireless Internet access in homes, “hot-spots,” university campuses, and corporate buildings. Hundreds of millions of Wi-Fi access points (APs) are deployed in major urban areas worldwide.

Read More >

By
February 11, 2010

First GPS Block IIF Satellite Moves to Cape Canaveral: Launch Window Opens Mid-May

First Block IIF Satellite (Boeing)

[updated Februaary 16] The first Block IIF satellite is undergoing final launch preparations after arriving at Cape Canaveral Air Force Station in Florida aboard a Boeing-built C-17 Globemaster III airlifter.

Space Vehicle 1 (SV-1), the first of 12 GPS IIF satellites for the U.S. Air Force, will lift off on a United Launch Alliance Delta IV vehicle later this year, with the first launch window in mid-May.

Read More >

By Inside GNSS
January 29, 2010

Septentrio Announces AsteRx3 Multi-GNSS Receiver

AsteRx3 Receiver from Septentrio

Septentrio has launched the AsteRx3, a compact multi-frequency GPS/GLONASS/Galileo and Compass/Beidou-ready receiver.

AsteRx3 is specially designed for integration in demanding precision positioning, navigation, and automation applications such as land and maritime survey, machine control, and unmanned aerial vehicle (UAV) payloads.

Read More >

By Inside GNSS
IGM_e-news_subscribe