GPS

CRPAs Protect Critical Infrastructure: How to Test

Since 2015, controlled reception pattern antennas (CRPAs) have come onto the market for civil applications where the need to counter increasing  GNSS signal jamming and spoofing has grown exponentially. Highly classified and previously available only to authorized military users, these powerful — and unfamiliar — components expand protection for critical infrastructure. All systems incorporating them should be tested for revamped vulnerabilities. This is how.

A free webinar on Wednesday, March 25 from 1:00 PM – 2:30 PM Eastern Daylight Savings Time addresses the topic “GNSS Vulnerability Testing and the Controlled Reception Pattern Antenna (CRPA).”

Read More >

By Inside GNSS

NEON for GPS-denied Environments Marches with Army, DOT

The U.S. Army’s Rapid Capabilities and Critical Technologies Office’s (RCCTO) selected TRX Systems to deliver a prototype tactical electronic warfare (EW) kit for dismounted soldiers. TRX is also one of 11 firms selected by the Department of Transportation to demonstrate GPS backup technologies, with tests to take place in March.

[This story is the third in a series of 11 detailing technology from firms selected by the Department of Transportation (DOT) in August 2019 to demonstrate technologies that could be used to back up the services provided by GPS should GPS signals be jammed, spoofed or unavailable.  See also Echo Ridge and Seven Solutions.]

TRX Systems will provide a portable kit that generates alerts when electronic jamming or spoofing is detected and will provide a “rewind” navigation feature to estimate the user’s probable current position after jamming or spoofing has occurred. The company has developed NEON, a GPS-denied location technology, providing 3D mapping and GPS-denied personnel tracking for warfighters, first responders, security and industrial personnel that operate indoors, underground, and in areas without GPS.

Neon Command User Interface. Courtesy TRX Systems
Neon Command User Interface. Courtesy TRX Systems

NEON delivers ubiquitous, low-cost, GPS-denied location through the use of advanced sensor fusion, ranging, and patented dynamic mapping algorithms. The algorithms fuse inertial sensor data, Wi-Fi readings and inferred building data to deliverreliable 3D location. Optional use of geo-referenced ultra-wideband or Bluetooth beacons enhances positioning accuracy

Neon User Interface. Courtesy TRX Systems
Neon User Interface. Courtesy TRX Systems

TRX’s NEON Location Service provides position data that enables tracking and navigation when satellite technology is unavailable or unreliable. NEON detects GPS interference and delivers continuous location during such events; NEON also delivers 3D personnel location indoors, outside, and underground. NEON provides PNT assurance with commercial-grade solutions that integrate with present and future military satellite assurance and location capabilities.

“The EW Kits provide an easy to use and real-time assessment of GPS integrity for the warfighter, integrated with existing military applications and systems,” said Carol Politi, President and CEO of TRX Systems.

In a 2017 case study, TRX Systems’ NEON Personnel Tracker solution provided 3D tracking of law enforcement, EMS Personnel and other first responders during a critical incident training exercise at Grand Central Terminal in New York City, hosted by the Department of Homeland Security (DHS).

Bottom Image (4th Image)
Courtesy TRX Systems

 

By Inside GNSS
March 20, 2020

When Truth Matters. Absolutely.

One may well ask, when doesn’t it?

That aside, some controversy has arisen in the world of competitive running, and self-competitive running as in Personal Bests, or PBs. Runners find their fitness trackers and watches don’t necessarily tell them the truth in terms of distance travelled. In fact, they very rarely tell the absolute truth. Which matters.

Read More >

By Alan Cameron
[uam_ad id="183541"]
March 13, 2020

Signal Vulnerability.

Previously, controlled reception pattern antennas (CRPAs) were only in the military domain, and highly classified. The need to counter increasing  GNSS signal jamming and spoofing in the civil realm has brought CRPAs into limited use there as well.  How to test for their efficacy in product design and development?

A free webinar on Wednesday, March 25 from 1:00 PM – 2:30 PM Eastern Daylight Savings Time addresses the topic “GNSS Vulnerability Testing and the Controlled Reception Pattern Antenna (CRPA).” This technically rich, educational event is sponsored by Spirent Communications and Inside GNSS.

Read More >

By Inside GNSS

U2: BeiDou Is My Co-pilot

According to a statement by the head of U.S. Air Force Air Combat Command, pilots of the elite U-2 spy plane wear watches that receive foreign GNSS signals and provide backup navigation when GPS is jammed.

“My U-2 guys fly with a watch now that ties into GPS, but also BeiDou and the Russian [GLONASS] system and the European [Galileo] system so that if somebody jams GPS, they still get the others,” said Gen. James “Mike” Holmes on March 4 at the McAleese Defense Programs Conference in Washington.

The Lockheed U-2, nicknamed “Dragon Lady,” is a single-jet engine, ultra-high altitude (70,000 feet, 21,300 meters) reconnaissance aircraft. It gathers intelligence with a variety of sensors. The U-2 is one of very few aircraft that have served the Air Force for more than 50 years, a select group that also includes the B-52 long-range bomber. The latest model, the U-2S, had a technical upgrade in 2012. [Dragon Lady photo above, courtesy Lockheed.]

Gen. Holmes did not name the watch manufacturer.

In February 2018, Garmin announced that its D2 Charlie aviator watch had been selected by the Air Force  for use by the pilots of the Lockheed U-2 aircraft. “The high-sensitivity WAAS GPS-enabled D2 Charlie aviator watch incorporates global navigation capability, rich and colorful moving maps and more, providing pilots in the USAF with an exclusive, back-up navigation timepiece in the cockpit. . . . The D2 Charlie aviator watch will be an integral and functional part of the U-2 pilot’s toolkit.”

According to the press release, Garmin expected the United States Air Force to take delivery of more than 100 D2 Charlies.

Among the sensors mentioned on Garmin’s spec sheet for the watch are GPS, GLONASS, a heart rate monitor, barometric altimeter, compass, accelerometer and thermometer. BeiDou is not listed.

However, in an annual report filed with the Securities and Exchange Commission, the company stated: “Garmin utilizes a variety of other global navigation satellite systems (GNSS) including, but not limited to . . . .The BeiDou Navigation Satellite System (BDS), a Chinese satellite navigation system that is expected to have 35 operating satellites in orbit by 2020 and will provide global coverage.”

Charlie
Garmin’s D2 Charlie watch, shown here with Weather radar overlay feature. Photo: Garmin

D2 Charlie has a sapphire scratch-resistant crystal lens and a diamond-like carbon (DLC) coated titanium bezel. A sunlight-readable, high-resolution color display with LED backlight on the watch face allows pilots to view data in most lighting conditions in the cockpit. It offers up to 20 hours of battery life in GPS mode and up to 12 days in smartwatch mode. It comes with a leather wristband and a sporty silicone band.

By Inside GNSS
March 3, 2020

Air and Space Forces Want $100s of Millions More for GPS-related Priority Projects

When the White House submits its budget request for the Department of Defense to Congress every year, that is not the final word. The different military services also send Congress their unfunded priority lists, which detail the projects the White House chose to forego but, the services hope, Congress will add back in. This year several of those priorities are GPS-related.

Read More >

By Dee Ann Divis
[uam_ad id="183541"]
1 36 37 38 39 40 158
IGM_e-news_subscribe