Aerospace and Defense

September 9, 2007

It’s MBOC for common Galileo-GPS civil signal

The United States and the European Union (EU) have agreed to use the multiplexed binary offset carrier (MBOC) for a common GPS-Galileo signal for civilian use. In the future, this will enable combined GNSS receivers to track the GPS and Galileo signals with higher accuracy, even in challenging environments that include multipath, noise, and interference.

These signals will be implemented on the Galileo Open Service and the GPS IIIA new L1 civil signal known as L1C.

Read More >

By Inside GNSS
July 2, 2007

U.S. Air Force Releases GPS Block IIIA Satellite RFP

After several false starts in the previous months and a multi-year delay in the overall GPS III architecture development, the GPS Wing (formerly the GPS Joint Program Office) announced on July 12 the release of a request for proposal for the development and production of the GPS Block IIIA satellites.

Read More >

By Inside GNSS
July 1, 2007

Galileo’s New PPP: Public-Public Partnership?

GSA Executive Director Pedro Pedreira (left) and Guiseppe Viriglio, ESA director of telecom and navigation, at signing of accord

Having abandoned — for the time being at least — attempts to attract private investment to the creation of Galileo’s infrastructure, European GNSS leaders are working to shape a Plan B that can gain support from the program’s extensive group of stakeholders.

Read More >

By Inside GNSS
[uam_ad id="183541"]
June 3, 2007

Speaking with Authority: Galileo’s Lead Agency in a Changing World

Sometimes things don’t go as planned.

That certainly is the situation facing the European GNSS Supervisory Authority (GSA) today as the new lead agency for Galileo affairs.

A meltdown of the public private partnership (PPP) that was supposed to build and operate Europe’s GNSS has thrust an unexpected — and unscripted — role into the hands of the GSA almost at the very moment that the new organization first stepped onto the public stage.

As originally envisioned, the GSA — a European community agency operating under the aegis of the European Commission (EC) — had only to “conclude a concession contract with whichever consortium is selected on completion of the development phase of Galileo.”

Not “negotiate” a contract — that was the task of GSA’s predecessor, the Galileo Joint Undertaking (GJU) — but merely sign off on the deal. And then monitor the contract’s implementation on behalf of its public sponsors while taking up a full suite of other tasks.

Instead, on May 11, the GSA Administrative Board delivered its opinion that progress in negotiations with the consortium of eight companies seeking the 20-year concession contract was not making “relevant progress at the level” needed to ensure a timely completion of the Galileo project.

That conclusion by the GSA board, and a set of alternative courses of action, will now go to the European Union (EU) Transport Ministers Council in early June.

At the center of the storm are the GSA and its executive director, Pedro Pedreira, who took up his responsibilities in July 2005. Before his GSA appointment, Pedreira was serving as director of business development at Portugal Telecom, having spent more than 20 years in the satellite communications field.

Still unfamiliar to many in the GNSS community, the GSA has a €420 million budget for 2007, including €40 million in this year’s R&D allocation from the EC’s 7th Framework Program. An administrative board with representatives from the EU’s 25 member states oversees the authority. Unlike many European Community institutions, however, the board only requires two-thirds majorities for its decisions, which should enable it to act quickly and powerfully.

Although he has been at the GSA nearly two years, it was only upon the “liquidation” of the GJU in January that Pedreira and his organization became truly visible. During the interim, his focus was on building a staff with “critical mass” — now numbering about 50 — and preparing for the authority’s role as the lead agent for supervising implementation of Galileo and monitoring compliance of a Galileo Operating Company (GOC) with the concession contract.

In a series of exclusive conversations with Pedreira and key GSA staff members in March and May, Inside GNSS explored the agency’s mission and the implications of a potentially strategic change of direction for the Galileo program and the authority’s role.

European sources close to the concession negotiations have told Inside GNSS that the leading alternate approach to a PPP is an outright public takeover of the project now and issuance of a new tender for a private operator once most or all of the Galileo space and ground infrastructure is built.

Pedreira would not discuss the specifics of any of the proposed alternatives before they are presented to the transport ministers in June. However, he acknowledged that “the original mandate [to the GSA] was based on a certain model – PPP.” Depending on the decision reached by the transport ministers, “The Council may look at the governance of the program and adjust the mandate of the GSA.”

More, and Then Less

As laid out in a July 12, 2004, EU Council regulation establishing the GSA, the first order of business for the authority was to “conclude a concession contract with whichever consortium is selected on completion of the development phase of Galileo and take steps to ensure compliance by that consortium with the obligations — in particular the public service obligations — arising from the concession contract.”

Because at the time it went out of business the GJU had only managed to thrash out a “head of terms” agreement — essentially, the chapter headings and outline of points for an eventual contract — it initially appeared that GSA would be saddled with a lengthy negotiation with the private consortium. Instead, by the time of the Munich Satellite Navigation Summit in early March, Pedreira and EC Director-General for Transport and Energy Matthias Ruete were decrying the failure of the consortium to incorporate, appoint a CEO, and finish talks on the concession contract.

At a March 22 meeting, the transport ministers gave the consortium until May 10 to meet a series of milestones, leaving it to the EC, “assisted by GSA and ESA [the European Space Agency], to assess progress in the concession negotiations and to submit alternative scenarios, also assessed for costs, risk, and affordability,” in time for their June council meeting.
“The council in March noted its previous decision to implement the project with PPP,” says Pedreira. “But we could have a different geometry of partnership [with the private sector]. It could have a different shape.”

So, what happens to GSA if the transport council (and probably the Ministers Council — heads of state of the 25 EU members) drops or delays implementation of the PPP concept and goes for an public sector–only plan?

“It’s too soon to see how to adjust forms of the current organization,” says Pedreira. “The concession has taken a considerable amount of our resources. We have been giving a priority to the concession [since GSA was established].”
Indeed, supporting the GSA concession effort, headed by Carlo des Dorides who had served as chief negotiator with the GJU, was at the top of several other GSA administrators’ agendas.

In a March interview, Gian Gherado Calini, head of market development, told Inside GNSS that his group had two main tasks: first, the concession and working with des Dorides to identify size and growth of those markets supported by services operated by the concession. Second came downstream markets and creating conditions for them to succeed.

At that time, Hermann Ebner, head of the largest GSA unit, the Technical Department, put support for the concession process at the top of his list as well. A GSA technical task force had completed an assessment of design risks, and the department handled design revisions proposed by the consortium and kept a running tab on the changing cost figures associated with the program.

Even the security section had a role through the PACIFIC project to size the potential markets for the publicly regulated service (PRS), an encrypted signal designed for public safety, law enforcement, and possibly military applications.

Still Plenty to Do

Although the concession headed the list of GSA responsibilities, it is far from the only task given the agency by the 2004 regulation.

“Many aspects of GSA role are independent of the procurement model,” Pedreira says, ticking off some of the others that are top of mind: Galileo security, frequency coordination, management of R&D programs, and integration of the European Geostationary Navigation Overlay Service (EGNOS, essentially a satellite-based augmentation system) into the Galileo infrastructure and operations.

In the matter of market development, for instance, Pedreira points out, “The business plan of the concession internalized only a fraction of the public activity [in application markets].” The Open Service, from which an overwhelming portion of Galileo market revenues will come, was not part of the concession’s mandate. That represents, in Calini’s words, “a gold mine” of potential new services and products.

Getting Technical
. Meanwhile, the EC 7th Framework Program has allocated a total of €350 million over the next seven years for R&D projects under the GSA’s control, plus any still-uncompleted FP6 projects taken over from the GJU. The first calls for tenders on FP7 projects this year will target applications, receiver development, and Galileo implementation, says Ebner.

Another large item on Ebner’s agenda, regardless of GSA’s partner in moving Galileo forward, is system definition and development. On May 11, the agency published announcements for a system definition and performance head, a space segment implementation officer, and a ground mission segment implementation officer.

Other major tasks for the GSA Technical Department include managing the Galileo signal Interface Control Documents (ICDs) and frequency coordination. At its March 21 meeting, the GSA Administrative Board issued notice of an intention to proceed with implementing the multiplexed BOC waveform that will serve as the basis not only for Galileo Open Service signals but the new GPS civil signal at the L1 frequency (L1C).

Unlike the GJU, GSA can sign contracts and handle international agreements previously overseen by other EC departments. It has taken over from the GJU the responsibility for keeping track of projects by the People’s Republic of China, Israel, and other co-investors in Galileo.

Keeping Galileo Safe.
Nearly untouched by the success or failure of the concession is the GSA’s role regarding security for the Galileo system — including space, ground, and user segments. “Galileo is the first EU space program for which security was needed,” says Olivier Crop, the agency’s PRS officer.

The GSA has created a System, Safety, and Security Committee (3SC), which will be a key player in EU decisions on Galileo. The authority also will be responsible for establishing a Galileo Security Center charged with helping protect the system’s critical infrastructure, controlled signals, and PRS-capable user equipment.

EC policy on PRS, which was only approved for inclusion in Galileo in 2004, lets every member nation decide whether they want to allow use of PRS within their own “sovereignty domain.” Each country controls access to its own receivers, but operations in other countries or throughout the EU generally requires approval of the European Council.

EGNOS.
The 2004 council regulation also entrusted the GSA with “managing the agreement with the economic operator charged with operating EGNOS and of presenting a framework on the future policy options concerning EGNOS,” which is largely complete and in provisional operation.

In 2004, with the incorporation of EGNOS into the concession, Pedreira says, came the recognition “that the consortium could not tackle [operating EGNOS] as soon as hoped. There was a need to go for an open tender on EGNOS economic operation.”

EGNOS, in fact, was a subject of discussion at the GSA board’s May 11 meeting. “There are many aspects to settle,” says Pedreira — issues involving ESA and the aviation organizations that are co-owners of EGNOS with the EU. “We will need to transfer assets to GSA to proceed with an open tender” for a service provider to implement early operation of EGNOS.
“At the working level, GSA has very good, very intense relations with ESA, especially on EGNOS and IOV,” he adds.

The GSA is also charged with responsibilities during the in-orbit validation (IOV) phase of Galileo’s development, although ESA is in charge of the technical side of things. “It would be surprising if the council went for a solution without taking note of the progress on the IOV phase and making best use of the assets and investment made to date.”

Perhaps most significantly, under the 2004 council regulation the GSA owns the tangible and intangible assets created during the development and implementation phases of the program. In other words, the agency is the legal guardian of the public interest in Galileo.

Overhanging that role, of course, is what the GSA’s political masters — initially, the transport ministers and, ultimately, the member states — decide to do about Galileo as a whole.

By Inside GNSS
April 6, 2007

Two for One: Tracking Galileo CBOC Signal with TMBOC

On-going discussions are taking place between U.S. and European Union (EU) experts concerning the future GPSIII L1C and Galileo E1 OS civil signals. An agreement on a common power spectral density (PSD) known as multiplexed binary offset carrier (MBOC) recently emerged as a solid candidate to replace the current baseline: BOC(1,1).

On-going discussions are taking place between U.S. and European Union (EU) experts concerning the future GPSIII L1C and Galileo E1 OS civil signals. An agreement on a common power spectral density (PSD) known as multiplexed binary offset carrier (MBOC) recently emerged as a solid candidate to replace the current baseline: BOC(1,1).

In order to comply with the MBOC PSD, two candidate implementations, known as time-multiplexed BOC (TMBOC) and composite BOC (CBOC) modulations, have been proposed. If fully exploited, these implementations will provide improved performance but require a more complex receiver architecture than a BOC(1,1) receiver.

Increased complexity and associated higher costs, however, might be detrimental for a GNSS receiver manufacturer that would like to use MBOC, but with limited modifications to their receivers — particularly for those companies producing equipment for mass consumer markets. This article aims at evaluating a new CBOC receiver architecture using locally generated TMBOC-like signals that will result in a simpler architecture comparable to a BOC receiver.

The normalized MBOC PSD includes the whole of GPSIII L1C or Galileo E1 OS civil signals, which means both their data and pilot components.

Because the MBOC is defined only in the frequency domain, a variety of compliant temporal modulations can be used. In the literature, two different modulations were proposed to implement the MBOC:
• TMBOC, which multiplexes in the time domain BOC(1,1) and BOC(6,1) sub-carriers and seems likely to become the main candidate used by the future GPSIII L1C signal, and
• CBOC, which linearly combines BOC(1,1) and BOC(6,1) sub-carriers (both components being present at all times), and appears to be the leading candidate for the Galileo E1 OS signal.

The Additional Resources section lists papers by G. Hein et al, J. Betz et al, and J.-A. Avila-Rodriguez et al, which introduce and discuss TMBOC and CBOC in detail. (Available in the downloadable PDF, above.)

The philosophy behind these two modulations is very different, and, although they would theoretically produce equivalent tracking when used with a TMBOC or CBOC receiver (considering pilot and data channels), they can result in different performances in other configurations (for instance, considering the pilot channel only).

A major difference between the TMBOC and CBOC modulations is that the CBOC sub-carrier, as the weighted sum of two squared-wave sub-carriers, will have four different levels. Consequently, this means that an optimal CBOC receiver has to generate a local replica that also has four levels, resulting in a local replica encoded on more than just one bit. This could complicate the CBOC receiver architecture and might prove detrimental to the widespread use of this modulation for certain types of receiver, if retained as the Galileo E1 OS modulation.

This article describes an innovative technique that only requires a 1-bit local replica, very similar to a TMBOC waveform, to track CBOC signals. This method is particularly interesting because, despite its simple implementation, it has only limited losses in tracking performance with respect to traditional CBOC or TMBOC receivers. Moreover, it shows excellent performance when compared to the previous GPS/Galileo L1 baseline signal, the BOC(1,1).

The first part of this article describes the possible CBOC and TMBOC candidates for Galileo E1 OS and GPS III L1C modulations. The second part looks at the traditional tracking performances of these two modulations in terms of thermal noise and multipath-induced errors.

Finally, we introduce the new 1-bit tracking technique and compare it against optimal CBOC and TMBOC tracking in terms of tracking noise and multipath resistance.

Conclusions
Following the US/EU MBOC agreement, the current main candidates for the GPSIII L1C and Galileo E1 OS have been introduced. In particular, the pilot channels have been analyzed with their use of the new CBOC and TMBOC modulations.

Although adding a very small amount of BOC(6,1) to the previous BOC(1,1) baseline, it has been shown that the tracking performances of these future signals are significantly improved compared to pure BOC(1,1) tracking. In particular, tracking noise is reduced by 2.4 to 3 dBs in terms of equivalent C/N0, and multipath mitigation is significantly improved.

Focusing on the CBOC modulation, its multi-level waveform could result in more challenging receiver architecture. In order to keep a simple receiver design to receive a CBOC signal, a new tracking technique, referred to as TM61, has been proposed to allow tracking of the CBOC modulation with a 1-bit only locally generated replica. This method uses time-multiplexing of BOC(1,1) and BOC(6,1) sub-carrier on the same model as the TMBOC modulation.

A preferred implementation of TM61 is the use of a pure BOC(1,1) sub-carrier for the prompt correlators and a pure BOC(6,1) sub-carrier for the early and late correlators (a DP discriminator being assumed). This yields a much simpler receiver architecture since it requires only pure sub-carriers with no-multiplexing (different from TMBOC receivers), 1-bit local replicas (unlike a CBOC local replica) and a minimum of correlators. Please note it is also possible to use another implementation of the TM61 tracking methods with time-multiplexing.

In its preferred implementation, TM61 brings only a slight post-correlation SNR degradation (about 0.35 dBs for the selected CBOC main candidate for Galileo pilot channel), enabling good phase tracking. TM61 code tracking noise performance is degraded with respect to traditional CBOC tracking by approximately 2.4 dBs. However, this has to be put into perspective considering the substantial reduction in receiver complexity with TM61 and the fact that thermal noise might not be the main source of error for many applications.

Finally, the TM61 tracking technique has been demonstrated to provide, in its preferred implementation, a better multipath resistance compared to traditional CBOC tracking. In any case, the use of TM61 to receive a CBOC signal has been shown to significantly outperform the traditional reception of a pure BOC(1,1) with equivalent power, thus supporting the use of the modernized CBOC signal. Consequently, it seems to be a very good tracking technique for implementation in future CBOC receivers.

For the full article, including graphs, figures, and additional resources, download the PDF above.

By

Enhancing the Future of Civil GPS: Overview of the L1C Signal

The Global Positioning System is undergoing continual modernization, providing ongoing improvements for users worldwide. Although various enhancements in system features have been under development since the mid-1990s, modernization first benefited civil users when Selective Availability — a security-motivated technique for “dithering” the open L1 signal to reduce positioning accuracy — was set to zero in May 2000.

The Global Positioning System is undergoing continual modernization, providing ongoing improvements for users worldwide. Although various enhancements in system features have been under development since the mid-1990s, modernization first benefited civil users when Selective Availability — a security-motivated technique for “dithering” the open L1 signal to reduce positioning accuracy — was set to zero in May 2000.

Subsequently, other improvements in accuracy have been obtained through enhancements to the capabilities and operation of the control and space segments, still based on the original set of GPS signals.

The launch of the IIR-14(M) (modernized replenishment satellite) in 2005 began a new era with transmission of the L2 civil (L2C) signal, along with the modernized military M-code signal. A third civil signal, called L5, will be transmitted from Block IIF satellites.

All the while, improvements in monitoring, satellite technology (for example, the on-board atomic clocks) and operations yield continuing increases in accuracy. The United States plans to continue providing these capabilities free of user fees. It will continue to complement this pricing policy by providing free and open signal descriptions and other technical information needed for development of receivers and services using civil signals.

In the meantime, development of the next generation of satellites, called GPS III, and a modernized control segment (OCX) continues, which will lead to greatly enhanced capabilities beginning early in the next decade. An integral part of the GPS III capabilities being developed is a new civil signal, called L1C, which will be transmitted on the L1 carrier frequency in addition to current signals.

Approximately one year ago, the U.S. Air Force released the initial draft of Interface Specification IS-GPS-800, describing L1C. Novel characteristics of the optimized L1C signal design provide advanced capabilities while offering to receiver designers considerable flexibility in how to use these capabilities.

The development of L1C represents a new stage in international GNSS: not only is the signal being designed for transmission from GPS satellites, its design also seeks to maximize interoperability with Galileo’s Open Service signal. Further, Japan’s Quazi-Zenith Satellite System (QZSS) will transmit a signal with virtually the same design as L1C.

L1C has been designed to take advantage of many unique opportunities. Its center frequency of 1575.42 MHz is the pre-eminent GNSS frequency for a variety of reasons, including the extensive existing use of GPS C/A code, the lower ionospheric error at L1 band relative to lower frequencies, spectrum protection of the L1 band, and the use of this same center frequency by GPS, Galileo, QZSS, and satellite-based augmentation system (SBAS) signals for open access service and safety-of-life applications.

Other unique opportunities that the L1C design leverages include advances in signal design knowledge, improvements in receiver processing techniques, developments in circuit technologies, and enhancements in supporting services such as communications. The L1C design has been optimized to provide superior performance, while providing compatibility and interoperability with other signals in the L1 band.

L1C provides a number of advanced features, including: 75 percent of power in a pilot component for enhanced signal tracking, advanced Weil-based spreading codes, an overlay code on the pilot that provides data message synchronization, support for improved reading of clock and ephemeris by combining message symbols across messages, advanced forward error control coding, and data symbol interleaving to combat fading.

The resulting design offers receiver designers the opportunity to obtain unmatched performance in many ways.This article will give an overview of the L1C signal design, highlighting the features that will benefit receiver designers and, ultimately, end users. The following section provides background on L1C and its design process, from its beginnings in 2003.

Subsequent sections then provide an overview of the signal structure, details of the signal’s spreading codes and overlay codes, spreading modulation, data message structure, and encoding and decoding of message information.

Summary of Benefits
Although more complete details are provided in IS-GPS-800, we will outline the most significant characteristics here.

L1C has been designed with unique, innovative, and powerful new features to enhance its robustness for all users, especially in difficult environments.

The signal structure alone, with the spreading code and the overlay code, provides exact GPS time, modulo 18 seconds. Alignment to the spreading code provides bit synchronization and alignment to the overlay code provide frame synchronization, making these receiver functions simple and robust.

For high-precision (e.g., survey) use, the pilot carrier removes the half cycle phase ambiguity, and the larger RMS bandwidth of the new spreading modulation has the potential to improve tracking performance, especially multipath mitigation. With the combination of improved carrier tracking of the pilot component, segmentation of clock and ephemeris in the data message, and FEC design, an autonomous navigator can demodulate the satellite clock and ephemeris whenever the signal can be tracked.

The improved cross-correlation of the new codes will also improve the performance of high-sensitivity receivers. Performance will also improve as a result of the new message format that allows code combining across satellites for the TOI and code combining of the near constant sub-frame 2 ephemeris data across multiple frames. International collaboration and outreach have assisted in producing a truly international signal with capabilities that will serve users for decades to come.

For the full article, including figures, graphs, and additional resources, download the PDF above.

By
[uam_ad id="183541"]
March 2, 2007

More Perils for Galileo . . . and Other GNSS Dramas

A convergence of developments over the past few months has brought Europe’s Galileo program to the most critical passage of its history — at least, since final approval of the GNSS initiative by the European Space Agency (ESA) and the European Union (EU) in 2003 and 2004, respectively.

Read More >

By Inside GNSS
January 31, 2007

GPS Block III Contracts

The U.S. Air Force has awarded two $50 million contracts to Boeing and Lockheed Martin to execute a system design review for the next-generation GPS space segment program, GPS Block III.

The contracts come on the heels of both companies successfully completing system requirements reviews in November 2006. Those reviews, part of a $10 million follow-on order to a Phase A Concept Development Contract awarded in 2004, assessed Boeing’s and Lockheed’s ability to mitigate development and delivery risks associated with building the Block III satellites.

Read More >

By Inside GNSS
October 1, 2006

GPS: Launches of Satellites and Institutional Initiatives

Successful launch of the second modernized Block IIR satellite, IIR-15(M2), on September 25 and scheduling of another IIR-M launch on November 14 underlines recent progress in the GPS program.

IIR-15(M2), also identified by its space vehicle number (SVN58) and pseudorandom code number (PRN31), will be placed into orbital plane A, slot 2. The U.S. Air Force has designated the satellite to be launched in November as GPS IIR-16/M3, PRN15/SVN55.

Read More >

By Inside GNSS

Correlators for L2C

The term “Correlator” is often used in discussions of GPS and GNSS receiver design. It has been used to describe devices as simple as a single exclusive OR gate through to complete “baseband” chips that include a microprocessor.

Most usually, and in this article, the term describes the hardware or software that produces all of the required correlation data for a single signal from a specific GNSS satellite signal. This is also sometimes termed a “channel.”

The term “Correlator” is often used in discussions of GPS and GNSS receiver design. It has been used to describe devices as simple as a single exclusive OR gate through to complete “baseband” chips that include a microprocessor.

Most usually, and in this article, the term describes the hardware or software that produces all of the required correlation data for a single signal from a specific GNSS satellite signal. This is also sometimes termed a “channel.”

With the open GPS civil signal at the L2 frequency (L2C) now becoming available on Block IIR-M satellites, receiver designers have the opportunity to work with a markedly different GNSS signal resource. The first IIR-M spacecraft (designated SVN53/PRN17) was launched September 25, 2005, and the second is scheduled to go into orbit on September 14, 2006. (IIR-Ms also transmit the new GPS L1/L2 military (M-code) signal, but we will not treat this issue here.)

Against that historic backdrop, then, this article examines some of the novel elements of the L2C signal and its implications for GNSS receiver correlators. Our focus will be on a technically challenging aspect of receiver operation: initial acquisition of the signal and its processing by the correlator.

But first we will review some of the key functional aspects of GNSS correlators and some of the signal parameters that affect their operation.

. . . We can more easily explain the role of a correlator if we examine its two functions separately. In a GNSS receiver, correlation is used in two distinct activities:

Acquisition. Before the receiver knows whether it can receive a certain satellite’s signal, it must “search” for it using the correlation in an ordered but relatively indiscriminate way. Effectively, many correlation trials are run for each of many code delays and Doppler frequency offsets.

Tracking. Once acquired, the receiver must still despread the received signal in order to receive data and measure pseudoranges. Several correlators are usually used to keep the local code as closely aligned to the received code as possible. To do this, a “delay-locked loop” is used, with the correlators operating within the loops, some typically ahead of the received code (“early”) and some behind (“late”).

In other words, correlation is used both to “get” the signal and to “keep” it. These actions should be considered quite separately. In this article, we concentrate on the acquisition process.

. . . Various signal parameters affect correlation. These are listed for the three GPS signals in Table 1. Both L2C and L5 have dataless sub-signals which are time-multiplexed (CM and CL) and in quadrature (I5 and Q5), respectively. Both use longer codes than L1, while L5 has a higher chipping rate. L5 also has the added complication of Neuman-Hoffman codes, which will not be further discussed here.

. . . Correlation Signal “Shape” – the L1 civilian C/A-code signal is a single BPSK modulation. Despite the fact that the L2C signal is also BPSK, it introduces another layer of complexity by having the data-carrying and dataless signals multiplexed in time. Typically, the shorter (20-millisecond) data-carrying CM code will be acquired first, then the receiver would hand over to the longer (1.5-second) dataless CL code for tracking.

. . . The beauty of the exploitation of the circular convolution is that the code in the data does not need to be well aligned with the stored data— the whole point of acquisition, after all, is to perform this alignment. So, if the CM code was chopped up into pieces smaller than 20 milliseconds, this circular convolution would no longer reflect the time domain correlation, and a receiver would need to have many stored codes.

. . . Many GPS chipsets are optimized for operation in mobile telephone handsets and, as such, are aimed at minimizing the drain on handset batteries. For such applications, the large L2C acquisition overhead presents a serious problem . .

Conclusion
In this article, we have primarily examined the implications of signal acquisition for the new L2C signal. In a typical L2C-only receiver, significantly more effort is required to acquire the signal than is the case for L1 C/A code: more than 200 times higher in the hardware case and more than 500 times higher in the software case. However, because the long CL code does not carry any data, it can be used for the long integrations required for acquisition in a weak-signal environment.

For the complete story, including figures, graphs, and images, please download the PDF of the article, above.

Acknowledgments
The author wishes to acknowledge the useful suggestions made by Eamonn Glennon of Signav Pty Ltd.

By
IGM_e-news_subscribe