Aerospace and Defense

April 30, 2020

Emerging Inertial Technologies Studied in May 6 Webinar

The MEMS-based inertial measurement unit (IMU) represents the single biggest positioning and navigation advance of the last 20 years. That assertion is made during the first of three panels in the webinar “Inertial Technology for Robotics, UAVs and other Applications,” freely available on May 6. The 1.5 hour presentation examines how this breakthrough plays in the fields of autonomy, high dynamics and challenging environments, including on the frontiers of space.

Three experts takes a close-up look at contemporary and emerging inertial sensor technologies and applications, from the laboratory to the factory to the field. Register here to attend. The webinar is sponsored by Sensonor.

MEMS (micro-electromechanical sensors) make possible a miniaturization of size, weight, power requirements and cost never thought achievable before. When MEMS inertial navigation pairs with GPS for navigation, the key factor is the error budget of each sensor and how that plays into the accuracy of the solution. Attendees will learn how the new inertial sensors’ reduced error budgets translate into higher system performance.

The presentation begins with the current state of the inertial art, delivered by a recognized expert. The second speaker describes a high-accuracy tactical-grade inertial measurement unit (IMU) with increased accelerometer performance to support demanding guidance and navigation applications.

This knowledge is taken to the field to examine the IMU’s role in successful satellite launch missions during the third panel. The attitude determination and control system (ADCS) rises to the challenge of an extremely demanding environments and set of requirements. A satellite moving at a speed of 7,500 meters/second over ground requires precise maneuvering, stabilization and point in order to obtain imagery at 1-meter resolution.

Questions from the audience are actively encouraged and will be addressed by the three speakers in the final portion of the webinar.

Webinar speakers:

Ralph Hopkins
Ralph Hopkins, Draper Lab

Ralph Hopkins is a Distinguished Member of the Technical Staff and Group Leader in the Positioning Navigation and Timing (PNT) Division at Draper, a leading research & development organization. He is responsible for the design and development of inertial instruments and sensors. Ralph has served as Technical Director of advanced inertial instrument development programs including strategic, navigation and tactical grade gyroscopes and accelerometers. He holds an ME in Engineering Mechanics from Columbia University, and an MS in Engineering Management from The Gordon Institute of Tufts University.

Reidar Holm
Reidar Holm, Sensonor

Reidar Holm is a Product Development Manager at Sensonor, a producer and developer of high-precision, light-weight gyros and IMUs. He works MEMS R&D and design, ASIC design, low-stress package design, system design, assembly and calibration, and high-volume production for automotive, MEMS pressure sensors, accelerometers, gyros and IMUs. He has a Degree in Electrical Engineering and Electronics from University of Manchester Institute for Science and Technology (UK) in 1982.

Ryan Robinson, LeoStella
Ryan Robinson, LeoStella

Ryan Robinson is the Lead Guidance, Navigation and Control Engineer at LeoStella, a small satellite design and manufacturing company, He is responsible for the design, development, test, and delivery of ADCS subsystems on LeoStella satellites. He received a Ph.D. in Aerospace Engineering from the University of Maryland, College Park. Technical areas of interest include attitude determination and control systems design, sensing and actuation, nonlinear dynamics, and autonomy.

Register here for the free webinar, “Inertial Technology for Robotics, UAVs and other Applications.” The webinar will also be available for subsequent download, for those registrants unable to attend at the appointed time.

By Inside GNSS
[uam_ad id="183541"]
April 15, 2020

Farewell to a Great Generation: GPS IIA

The U.S. Air Force 2nd Space Operations Squadron has put the last operational GPS IIA satellite, SVN 34, into disposal cycle for April 13 to 20. This is effectively end of life, or space hospice if you will, for a satellite that has outlived its 7.5 year design span by 19 years.

The rite of passage brings to a close a 26.5-year era in which the IIA generation carried the gold standard of positioning 20,200 km (12,550 miles) above the Earth, circling the globe twice a day.

Nineteen Block IIA satellites, slightly improved versions of the Block II series (the first full scale operational GPS satellites), were launched from November 26, 1990 until November 6, 1997. The satellites were built by Boeing, formerly Rockwell Corporation. They broadcast the L1 C/A signal for civil users and the L1/L2 P(Y) signals for military users.

SVN-34, the last of its generation, was removed from service October 9, 2019 but kept on as part of the constellation as a decommissioned, on-orbit spare until April 13.

2SOPS GPS IIA
Second Lt. Kelley McCaa, 2nd Space Operations Squadron satellite vehicle operator, and Airman 1st Class John Garcia, 2nd SOPS satellite systems operator, set satellite vehicle number-74, the first iteration of GPS Block III vehicles, as healthy and active to users Jan. 13, 2020, at Schriever Air Force Base, Colorado. The GPS Block III vehicles replaced the GPS Block IIA satellites, marking the end of a 26.5 year era. (U.S. Air Force photo by Staff Sgt. Matthew Coleman-Foster)

In the disposal process, “We push the satellite vehicle to a higher, less congested, ‘disposal orbit’ to eliminate the probability of collision with other active satellites,” said Capt. Angela Tomasek, 2SOPS GPS mission engineering and analysis flight commander. “[Then,] the vehicle is put into a safe configuration by depleting the leftover fuel and battery life and shutting off the satellite vehicle transmitters so no one else can access the satellite in the future.”

“As we continue to manage the influx of GPS III and maintaining other vehicles in a residual status, we have to be cognizant of effective risk management,” Tomasek continued. “As SVN-34 continued to age, we had to manage its aging components and likelihood of having a critical malfunction. We are at a stage where we are confident in the robustness of the overall GPS constellation to remove the last remaining IIA vehicle.”

Once SVN-34 arrives in its final orbit, 2 SOPS will hand over full tracking responsibility to the 18th Space Control Squadron at Vandenberg AFB, California, where it will be treated and catalogued like every other space object, on April 20.

“This disposal marks the end of an era in GPS history,” said Lt. Col. Stephen Toth, 2nd SOPS commander. “There are senior leaders and long-time contractors [who] launched and operated the IIA satellites at the beginning of their careers [who] are now here to see it end. It is an opportunity to reflect on the legacy and heritage of 2 SOPS and GPS to see how far we have come.”

 

By Inside GNSS
April 9, 2020

NATO Software Estimates Areas of Degraded GNSS Service

Experts at the NATO Communications and Information (NCI) Agency have developed a software-based tool that can estimate the area where an interfering signal would degrade or deny GNSS signals, and assess the scale of the interfering signal and its potential impact on operations. Principally of interest are jamming or spoofing attacks on GPS or Galileo, of course.

The Radar Electromagnetic and Communication Coverage Tool (REACT), was sponsored by the NATO Navigation and Identification Programme of Work. It serves as a proof-of-concept of how analytical tools could support the execution of operations. The tool is also available to NATO Nations free of charge. For now, the software is only used for trial and experimentation.

NATO REACT, photo courtesy NCI
NATO REACT, photo courtesy NCI

To use the software, operators input information on the particular jammers – their locations and technical characteristics — and the software produces a map of the area where the interfering signals would degrade or deny GNSS receivers. This can be displayed on the NATO Core Geographical Information System (GIS) map.

The next phase of the project focuses on ensuring the software can work on NATO classified networks, which would make it more available to operational commands to test and ensure such support measures are properly integrated into NATO operations.

The software and its estimations were demonstrated to operators during exercise Trident Jupiter 2019, part 1, to collect their feedback. The exercise gathered 3,000 military and civilian personnel as participants, evaluators and observers. Thirty NATO member and partner nations participated in nine different exercise locations across Europe.

“Ten consecutive twelve-hour working days and a relentless, ever-increasing, battle-rhythm tempo came to an end as Exercise Trident Jupiter 2019-1 (TRJU19-1) reached completion on Thursday, Nov. 14, 2019,” the agency stated.

TRJU19 was the largest and most complex exercise planned and executed by the Alliance’s Joint Warfare Centre to date. TRJU19-2 took place in March 2020.

“NATO’s adversaries have the ability to degrade or deny GPS-enabled capabilities,” said Jean-Philippe Saulay, a NATO Navigation and Identification Officer. “NATO must take appropriate measures to ensure Allied forces can operate in a degraded or denied environment.”

“NATO must maintain superiority in the electromagnetic environment, including but not limited to, positioning, navigation and timing services,” said Dr Enrico Casini, Communications and Navigation Engineer at the NCI Agency. “Situational awareness of navigation systems in a contested electromagnetic environment contributes to that superiority. NATO is enhancing its knowledge of electronic warfare technology,” Dr Casini said. “The electromagnetic environment has become even more contested in recent years. One aspect of that is interference with GNSS systems.”

Photos courtesy NATO Communications and Information Agency.

By Inside GNSS
[uam_ad id="183541"]
April 8, 2020

GPS III Launch Delayed by Pandemic

The Space Force’s Space and Missile Systems Center (SMC) announced Tuesday it would reschedule the launch of the GPS III SV03 satellite “to minimize the potential of COVID-19 exposure to the launch crew and early-orbit operators.”

Originally scheduled for late April 2020 on a SpaceX Falcon 9 rocket, the launch is now projected to go up no earlier than June 30.

Read More >

By Dee Ann Divis
April 1, 2020

Small Packages, Big Missions. Simulation Testing of CubeSats Before Launch is Critical

Hundreds, thousands of tiny satellites no bigger than a breadbox orbit the Earth, gathering a staggering amount of data and relaying petabytes of communication. These nanosatellites, commonly called cubesats, serve a variety of research and, increasingly, commercial roles. They work for science, exploration, technology development, education, telecommunications and other operations.

They are built to a standard dimension of 10 cm x 10 cm x 10 cm, or small multiples thereof. Typical weight is less than 1.33 kg (3 lbs) per U, or Unit, which equals on 10 cm cube.

Among other launch opportunities, the National Aeronautics and Space Administration’s (NASA’s) CubeSat Launch initiative (CSLI) can give a ride up to small satellites as auxiliary payloads on planned rocket missions.

To meet performance requirements, commercial cubesats must often report from a precisely known location. Faulty positioning can produce inaccurate data that will adversely affect commercial operations on Earth. Cubesats typically carry a commercial GPS L1 receiver to determine their orbit, as altitude and orbit determination and control form key parameters.

Cubesats often fly in formation and wil then use a GPS/GNSS receiver to co-ordinate and synchronize among themselves. Finally, they use GNSS for onboard synchronization of operations and for precise timestamping of Earth observation data

Though small is size, cubesats can carry a large price tag, up to hundreds of thousands of dollars per project. Pre-launch testing for quality assurance is critical, particular of the satellites’ PNT capabilities. Earth-bound testing cannot replicate the conditions of low-Earth orbit, where the satellites will be moving at several kilometers per second, and need to maintain awareness of the also moving GNSS satellites above them in mid-Earth orbit. Thus the key role of GNSS simulation in this burgeoning industry.

The content of this article is largely drawn from a blog post by Talini Pinto Jayawardena, a space science technologist with Spirent Communications, and also a research manager at the University of Bath. To read her full blog, which contains a detailed description of key performance criteria to test with a simulator, visit here.

Extensive discussion of Doppler shift handling, precise orbit determination, antenna performance, time synchronization, special events, onboard interference handling, and the impact of environmental test (vibration and thermal vacuum) is presented.

 

By Inside GNSS
March 31, 2020

GPS Ground, Space, User Segments and Cyber Security Move Forward Together

GPS got a twofer on March 27 with major advances for the ground segment and the space segment. The Contingency Operations (COps) program, an upgrade necessary to the Operational Control System for it to command and control the new GPS III satellites, was approved. And the second GPS III satellite to orbit was approved, a stage that should shortly be followed by it  becoming available to military and civilian users.

Both steps occurred upon receiving the U.S. Space Force’s Operational Acceptance approval.

COps has operated on a trial basis since last October, supporting the developmental testing of the GPS III ground and space capabilities. The trial period culminated in a fully mission capable rating from the Air Force Operational Test and Evaluation Center’s Operational Utility Evaluation.

GPS SV02 launched on Aug. 22, 2019, and upon completing its test, COps took control of it, bringing it into the III fold along with its earlier sibling, GPS III SV01. Administering COps and in direct control of both satellites is the 2nd Space Operations Squadron at Schreiver Air Force Base, Colorado.

“Of all the programs that will be delivered this year, there are few that carry with it as significant an impact to the warfighter and civilian users as [COps] will. This is truly a remarkable leap forward for the GPS enterprise and the capability it provides, and I couldn’t be more proud of the team that came together to make it happen,” said Lt. Col. Stephen Toth, 2nd Space Operations Squadron commander.

Lockheed Martin built both satellites as well as the COps command and control program. The company is under contract to build up to 32 of the new generation and its follow-on version, carrying new technology and advanced capabilities in payloads made by L3Harris. The military advances aboard these satellites include the new military M-code, and COps is necessary to administer this signal.

19 previously orbited IIR-M and IIF generation GPS satellites can broadcast M-Code, as can GPS III SV01 and SV02. The third M-code enabled GPS III satellite should launch in April of this year. The military is getting very close to full M-code capability, which will occur when 24 orbiting satellites have it. Its operational availability is on track for 2020.

User Equipment Not Far Behind

The M-Code Early Use (MCEU) upgrade, delivered earlier this year, is a key part of COps, enabling the system to task, upload and monitor M-Code within the GPS constellation. It also supports testing and fielding of modernized user equipment, prior to the completion of the next-generation ground control system, or OCX.

The M-Code encrypted GPS signal enhances anti-jamming and protection from spoofing, and increases secure access for U.S. and allied military forces.

A key to enabling M-Code is a new software-defined receiver Lockheed Martin developed and is installing at all six Space Force monitoring sites. The M-Code Monitor Station Technology Capability receives and monitors M-Code signals.

Red Dragon Breathes Cyber Security

Finally, Lockheed Martin als0 delivered the Red Dragon Cybersecurity Suite (RDCSS) Phase III upgrade during the fourth quarter of 2019, dramatically improving Defensive Cyber Operations (DCO) visibility into GPS network traffic. Other add-ons include user behavior analytics to analyze patterns of traffic and network taps to improve data collections.

“GPS is an attractive target for our adversaries, so it was critical we bring our best cybersecurity defenses to the table,” said Stacy Kubicek, Vice President of Mission Solutions Defense and Security.

[Image above: Capt. Adam Moody, 2nd Space Operations Squadron Global Positioning System Operations Support flight commander, and Staff Sgt. Carl Ellinger, 2 SOPS GPS mission chief, review a checklist of procedures for a transfer operation at Schriever Air Force Base, Colorado (U.S. Air Force photo/Dennis Rogers)]

By Inside GNSS
1 17 18 19 20 21 60
IGM_e-news_subscribe