Just like the kids valiantly doing their homework during this strange, removed time, PNT enthusiasts young and old around the world can put their isolation to good use by honing skills at home. “GPS: An Introduction to Satellite Navigation,” the massive online open course created by Frank van Diggelen and the late Per Enge, is available on YouTube.
A new GNSS/INS receiver, the AsteRx-i D UAS from Septentrio, specifically targets integration into unmanned aerial systems (UAS). It provides centimeter-level RTK positioning and 3D attitude. It features a 44 pin connector compatible with 3rd-party integrations, as well as event marker inputs to accurately time-stamp camera shutter events.
A new marine-certified quad-band GNSS receiver, the LD900 from VERIPOS, delivers accurate and reliable positioning in demanding offshore environments. The LD900 can track four GNSS frequencies simultaneously to ensure a precise position is always available at sea.
Qinertia, a PPK software from SBG Systems, now supports third-party Inertial Measurement Units (IMUs) and offers a GNSS post-processing license that covers all major GNSS receivers.
In its order allowing Ligado Networks to use satellite frequencies for on-the-ground wireless, the Federal Communications Commission set conditions on the firm’s operations, but only at the very tail end. Those conditions are there to help protect GPS receivers from interference — interference the FCC acknowledges as being quite possible.
Though the FCC approved Ligado Networks’ request to use satellite frequencies to support terrestrial 5G, opposition to the move remains firm as everyone waits to see what kind of measures are included in the final decision to protect GPS from interference.
The five members of the Federal Communications Commission voted unanimously to approve a request by Ligado Networks to use satellite frequencies neighboring those used by GPS to broadcast from ground antennas for 5G, the agency announced Monday morning.
Federal Communications Chairman Ajit Pai’s step this week toward approving Ligado Networks’ request to use its satellite frequencies for a terrestrial 5G service comes after nearly a decade of testing that showed both versions of their proposal would interfere with GPS users.
We stand at an existential crossroads while someone else decides our future. I don’t mean the choice of direction, currently roiling the front pages, that pits the national health against the national economy. No, this one doesn’t get the attention it deserves, outside of the PNT and the telecom communities, though arguably it could have equally long-running and widespread, perhaps catastrophic effects.
“Ligado’s planned usage will likely harm military capabilities, particularly for the U.S. Space Force, and have major impact on the national economy,” two ranking Senators and a Representative wrote. The timing could not be worse, they said to allow what “is fundamentally a bad deal for America’s national and economic security.”
The U.S. Air Force 2nd Space Operations Squadron has put the last operational GPS IIA satellite, SVN 34, into disposal cycle for April 13 to 20. This is effectively end of life, or space hospice if you will, for a satellite that has outlived its 7.5 year design span by 19 years.
The rite of passage brings to a close a 26.5-year era in which the IIA generation carried the gold standard of positioning 20,200 km (12,550 miles) above the Earth, circling the globe twice a day.
Nineteen Block IIA satellites, slightly improved versions of the Block II series (the first full scale operational GPS satellites), were launched from November 26, 1990 until November 6, 1997. The satellites were built by Boeing, formerly Rockwell Corporation. They broadcast the L1 C/A signal for civil users and the L1/L2 P(Y) signals for military users.
SVN-34, the last of its generation, was removed from service October 9, 2019 but kept on as part of the constellation as a decommissioned, on-orbit spare until April 13.
In the disposal process, “We push the satellite vehicle to a higher, less congested, ‘disposal orbit’ to eliminate the probability of collision with other active satellites,” said Capt. Angela Tomasek, 2SOPS GPS mission engineering and analysis flight commander. “[Then,] the vehicle is put into a safe configuration by depleting the leftover fuel and battery life and shutting off the satellite vehicle transmitters so no one else can access the satellite in the future.”
“As we continue to manage the influx of GPS III and maintaining other vehicles in a residual status, we have to be cognizant of effective risk management,” Tomasek continued. “As SVN-34 continued to age, we had to manage its aging components and likelihood of having a critical malfunction. We are at a stage where we are confident in the robustness of the overall GPS constellation to remove the last remaining IIA vehicle.”
Once SVN-34 arrives in its final orbit, 2 SOPS will hand over full tracking responsibility to the 18th Space Control Squadron at Vandenberg AFB, California, where it will be treated and catalogued like every other space object, on April 20.
“This disposal marks the end of an era in GPS history,” said Lt. Col. Stephen Toth, 2nd SOPS commander. “There are senior leaders and long-time contractors [who] launched and operated the IIA satellites at the beginning of their careers [who] are now here to see it end. It is an opportunity to reflect on the legacy and heritage of 2 SOPS and GPS to see how far we have come.”
Experts at the NATO Communications and Information (NCI) Agency have developed a software-based tool that can estimate the area where an interfering signal would degrade or deny GNSS signals, and assess the scale of the interfering signal and its potential impact on operations. Principally of interest are jamming or spoofing attacks on GPS or Galileo, of course.
The Radar Electromagnetic and Communication Coverage Tool (REACT), was sponsored by the NATO Navigation and Identification Programme of Work. It serves as a proof-of-concept of how analytical tools could support the execution of operations. The tool is also available to NATO Nations free of charge. For now, the software is only used for trial and experimentation.
To use the software, operators input information on the particular jammers – their locations and technical characteristics — and the software produces a map of the area where the interfering signals would degrade or deny GNSS receivers. This can be displayed on the NATO Core Geographical Information System (GIS) map.
The next phase of the project focuses on ensuring the software can work on NATO classified networks, which would make it more available to operational commands to test and ensure such support measures are properly integrated into NATO operations.
The software and its estimations were demonstrated to operators during exercise Trident Jupiter 2019, part 1, to collect their feedback. The exercise gathered 3,000 military and civilian personnel as participants, evaluators and observers. Thirty NATO member and partner nations participated in nine different exercise locations across Europe.
“Ten consecutive twelve-hour working days and a relentless, ever-increasing, battle-rhythm tempo came to an end as Exercise Trident Jupiter 2019-1 (TRJU19-1) reached completion on Thursday, Nov. 14, 2019,” the agency stated.
TRJU19 was the largest and most complex exercise planned and executed by the Alliance’s Joint Warfare Centre to date. TRJU19-2 took place in March 2020.
“NATO’s adversaries have the ability to degrade or deny GPS-enabled capabilities,” said Jean-Philippe Saulay, a NATO Navigation and Identification Officer. “NATO must take appropriate measures to ensure Allied forces can operate in a degraded or denied environment.”
“NATO must maintain superiority in the electromagnetic environment, including but not limited to, positioning, navigation and timing services,” said Dr Enrico Casini, Communications and Navigation Engineer at the NCI Agency. “Situational awareness of navigation systems in a contested electromagnetic environment contributes to that superiority. NATO is enhancing its knowledge of electronic warfare technology,” Dr Casini said. “The electromagnetic environment has become even more contested in recent years. One aspect of that is interference with GNSS systems.”
Photos courtesy NATO Communications and Information Agency.