

PRECISE POINT POSITIONING

Tuesday, April 14, 2015

1 pm–2:30 pm PDT 2 pm–3:30 pm Mount 3 pm–3:30 pm Central 4pm–5:30 pm Eastern

Audio is available via landline or VoIP For VoIP: You will be connected to audio using your computer's speakers or headset. For Landline: Please select Audio "Use Telephone" after joining the Webinar. US/Canada attendees dial: +1 (562) 247-8321 Access Code 228-670-112 Need Technical Assistance? Submit a question via your "Questions" pane, or contact GoToWebinar at: 1-800-263-6317 Select options 2,1,1

WELCOME TO Precise Point Positioning - Part 2: A Deeper Dive

Sanjeev Gunawardena Research Assistant Professor Autonomy & Navigation Technology Center Air Force Institute of Technology

Sunil Bisnath Associate Professor Department of Earth and Space Science and Engineering York University, Toronto

Moderator: Lori Dearman, Sr. Webinar Producer

Audio is available via landline or VoIP

For VoIP: You will be connected to audio using your computer's speakers or headset.

For Landline: Please select Use Audio Mode Use Telephone after joining the Webinar.

US/Canada attendees dial +1 (562) 247-8321 Access 228-670-112

Housekeeping Tips

How to ask a question?

File View Help		Recording
- Audio		
Audio Mode: OUse Telephone OUse Mic & Spe	akers	
Dial: +1 (805) 30 Access Code: 465-487-42	09-0020 20	HOLLYWOOD
Audio PIN: 22	#22# now	Poll
in you're alleddy on the call, press		QUICKPOLL
- Questions	5	Which of the following outcomes would be appealing to do a webinar? (choose all that apply) Poll Results (mutple answers allowed):
	^	Increase sales leads 60% Promote your brand 66% Raise product awareness 75% Boost your thought leadership 56%
		Post-webinar
		survey
[Enter a question for staff]	*	
	Send	Unmanned Systems Week
Webinar Now Webinar ID: 822-677-594		Survey Form: The two approximation of balance is and all of balance. From a strandom the same term is the same term is a strandom term balance and term term term term term term term term
GoToWebinar	м	

Who's In the Audience?

A diverse audience of over 600 professionals registered from 50 countries, 29 states and provinces representing the following industries:

23% GNSS Equipment Manufacturer

- 23% Professional User
- **12%** System Integrator
- **15%** Product/Application Designer

27% Other

Welcome from Inside GNSS

Glen Gibbons

Editor and Publisher Inside GNSS

A word from the sponsor

Thomas Morley M.Sc, M.E., P.Eng. Manager Applied Technology Group NovAtel, Inc

Precise Point Positioning - Part 2: A Deeper Dive

Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty, University of Minnesota

Poll #1 In next year or two PPP services will be available to all(choose one) On all GPS/GNSS receivers (e.g mobile, surveying, etc) ulletRetrofitted to all receivers ۲ On newer high-end receivers only • What is PPP?

Sanjeev Gunawardena Research Assistant Professor Autonomy & Navigation Technology Center Air Force Institute of Technology

Sunil Bisnath Associate Professor Department of Earth and Space Science and Engineering York University, Toronto

Receiver Considerations for High-Accuracy Applications

Disclaimers:

The views expressed in this presentation are those of the author, and do not reflect the official policy or position of the United States Air Force, Department of Defense, or U.S. Government.

Components, equipment and manufacturers discussed are for information purposes only. The author does not endorse any manufacturers, products, services, or the suitability of any products referenced herein for any particular purpose

Sanjeev Gunawardena Research Assistant Professor Air Force Institute of Technology

Receiver Type →	Mass Market / Consumer	Aviation Grade / Machine	Geodetic / Reference
Design Parameters ↓		Control	Station
Antenna Type Coverage Bands Approximate Size	Passive chip or helical element Covers L1 bands (GPS, GLONASS) Surface Mount Package <2cm	Patch on controlled dielectric single element (L1 band) or Stacked (L1 and L1/L5 bands) Integrated diplexer and LNA 10 cm	Multipath Limiting Elements Stable Phase Center External Choke Ring Design In-system calibration of inter-channel biases 30 cm
GNSS Bands	GPS L1 C/A, and GLONASS L1	GPS L1 C/A	GPS L1 C/A, P(Y)*
	and/or BeiDou B1	GPS L5	GPS L2 C, P(Y)*
	SBAS on L1	SBAS on L1 and L5	GPS L5
Pre-correlation Bandwidths	<2MHz (GPS C/A) <2 MHz (GLONASS)	4-16 MHz (L1) 16 MHz (L5)	16-24 MHz (L1, L2, L5)
Sample quantization and effective sample data rate (Mbytes/sec)	1 or 2 bits/sample	2-4 bits/sample	2-8 bits/sample
	0.5-1.0	8-32	24-150
Pre-Correlation Interference Detection/Suppression	none	CW, Swept CW, FM Non-uniform quantization J/N meter	Pulse-suppression, notch filter, frequency-domain excision
Reference Oscillator Type	TCXO (<=10 ⁻⁶)	High-performance TCXO or	OCXO or atomic standard
and stability		OCXO (10 ⁻⁶ – 10 ⁻⁷)	(10 ⁻⁹)

* Using codeless or semi-codeless tracking techniques

Review: Baseband Processing Comparisons

Receiver Type → Design Parameters ↓	Mass Market / Consumer	Aviation Grade / Machine Control	Geodetic / Reference Station
Carrier Tracking Architecture	None (A-GNSS) FLL (standalone GNSS)	FLL-assisted PLL or PLL (inertial aiding)	PLL (ephemeris aiding)
Code Tracking Architecture	None (A-GNSS) carrier-aided DLL (standalone)	carrier-aided DLL	carrier-aided DLL
Multipath Mitigating Technology	none	Narrow-correlator Double-delta correlator	Narrow-correlator Double-delta correlator Multi-correlator estimation
Typical Early-Late Correlator Spacing (GPS L1 C/A Chips)	1.0	0.3-0.1	0.1-0.01
Inter-Channel Pseudorange Bias Correction (Primarily for GLONASS)	None OR Model-wide calibration table	Device-specific calibration table (part of device testing and qualification process)	Dynamic calibration
Other features	Massive banks of parallel correlators for 'flash acquisition and long coherent integration	Dynamic multipath estimation and mitigation	Interference and signal deformation monitoring
Typical Implementation (2015)	System on chip (SOC) ASIC with integrated RF and baseband (standalone)	2-ASICs (RF + Baseband) Single SMD module or card	Front-end: RFIC-based Baseband: ASIC or FPGA + embedded processor
Power consumption and Cost	<2 W < \$3	<20W \$300-\$3,000	>30W \$6000-30,000

Receiver Considerations for High-Accuracy Applications

- Nominal Signal Deformation
- Front-End Component Effects
- Multipath
- In-Band Interference: detection and mitigation
- Extension to GNSS
 - GLONASS inter-channel biases
 - High-Accuracy GNSS Receivers: what to expect in coming years

GPS-SPS Nominal Signal Deformation

PRN32, SV23, Block IIA, EI:60, Pdi:720s

cm-level errors for differential GPS users using dissimilar receivers

TriQuint SAWTEK 854672, *f*_c: 70 MHz, *BW*_{3dB}: 24 MHz

6x Mini-Circuits SBP 70+, f_c : 70 MHz, BW_{3dB} : 18 MHz

Component Effects: Processing Overview

$R'(\tau)$ for SAW and LC Filters for all PRNs, $T_{pdi} = 600 \ sec$

w.r.t. d=0.002, $T_{pdi} = 600 \ sec$

Gunawardena & Van Graas, "GPS-SPS Inter-PRN Pseudorange Biases Compared for Transversal SAW and LC Filters Using Live Sky Data and ChipShape Software Receiver Processing," ION ITM 2015

measured device-to-device GPS-SPS pseudorange variation and inter-PRN biases for various filter types used in GNSS receivers

Filter:	#Devices	Device-device		Inter-PRN bias [cm]	
J UD DVV & Type	Testeu	variation			
	corr. spacing->	0.1	0.3	0.1	0.3
24 MHz L1 6-pole	1			<0.12	<0.12
Cavity					
20 MHz L1 3-pole	2	<1.0	<5.0	<0.12	<0.12
Ceramic					
40 MHz L1 BAW	2	< 20	< 70	<0.06	<0.12
24 MHz IF SAW	3	< 20	< 30	< 4.0	< 8.0
20 MHz IF SAW	5	< 12	< 30	< 1.5	< 3.0
16 MHz IF LC	2	<10	<20	<0.20	<0.30

Gunawardena & Van Graas, "Analysis of GPS-SPS Inter-PRN Pseudorange Biases due to Receiver Front-End Components," ION GNSS+ 2014

Multipath

- Narrowing correlator spacing reduces the effect of correlation peak distortion due to multipath
- Also reduces code measurement error since thermal noise on E and L become correlated (but reduces code tracking threshold)
- To reduce E-L spacing, need sufficient bandwidth to prevent toprounding of correlation function
- More advanced techniques in use: MEDLL MET, PAC™, Strobe™ Enhanced Strobe™, double-delta
- Mitigating short-delay multipath (<15m) is still challenging

- 'Wide' 1 chip Early-minus-Late
- 1992: 'Narrow' 0.1 chip Early-minus-Late
- 1994: Multipath
 Eliminating Technology (MET™)
- 1999: Pulsed Aperture Correlator (PAC[™]) (doubledelta)

Jones, Fenton & Smith, "Theory and Performance of the Pulse Aperture Correlator" http://www.novatel.com/assets/Documents/Papers/PAC.pdf

Ref: Federick. Bastide, Analysis of the Feasibility and Interests of Galileo E5a/E5b and GPS L5 Signals for Use with Civil Aviation, Ph.D. Dissertation, Oct 2004

scanned images from Kaplan & Hegarty, "Understanding GPS: Principles and Applications, Second Edition," Nov. 2005

Technique	Pros	Cons	
AGC voltage monitoring as an indicator of in-band interference	 Free indicator (already exists in most receiver front-ends) Can be used to activate other situational awareness indicators 	AGC voltage changes due to temperature variations and antenna orientation → false alarms	
Dedicated sample variance and FFT processing blocks	Dedicated/direct estimators of in-band power and spectrum for reporting GNSS band quality	Requires integration into new receiver designs. Needs dedicated resources. Increased power consumption	
Swept-Frequency PSD estimator using one or more existing receiver channels	Can be implemented on existing receivers (one or more spare channels). Frequency resolution adjustable via pre-detection integration time	Cannot observe 'instantaneous' spectrum; may misrepresent pulsed interference; consumes receiver channels	

Low-Cost Swept-Frequency Spectral Situational Awareness Monitor using Spare Channel(s)

More on GPS PPP

Sunil Bisnath Associate Professor York University

PPP CONCEPT IN RELATION TO POINT POSITIONING

ASPECT	РРР	RTK / NETWORK RTK
Coverage	Global	Local / regional
Range limitation	None	Baseline / network
Positioning accuracy	dm - mm	cm - mm
User hardware	Single geodetic receiver	Single geodetic receiver
Infrastructure	Global CORS network	Single CORS / regional CORS network
Corrections	GPS orbits and clocks	Single CORS measurements / CORS measurements; orbit and atmospheric corrections
Communications	Satellite; Internet; post-processing	Radio / cellular
Major limitation	Convergence period	Range

- Characteristic PPP initial convergence period
- Solution very stable post-convergence
- Solution gap requires re-convergence as shown

InsideGNSS

24 hour static solutions 10^c **Site : RIGA**, *RIGA* Above average convergence Δ Horizontal Statistic (mm) 2D Up 3D Δ Vertical **Bias** 3 3 4 5 std dev 5 2 7 6 4 rms 10 15 20 5 Difference [cm] Site : CONT, Concepcion Typical convergence 10 Statistic (mm) 2D Up 3D -11 Bias 9 14 std dev 2 2 3 9 11 14 rms 10 15 20 5 10 Site : POVE, Porto Velho Poor convergence Statistic (mm) **2D** Up 3D Bias 29 -1 29 std dev 14 10 10 10 15 20 32 31 26 rms Time [Hours]

InsideGNSS

DAILY VARIATIONS IN RATES OF CONVERGENCE

AZU1 Azusa, California

WHC1 Whitter College, California

InsideGNSS

stations < 10 km apart

(static processing)

DAILY HORIZONTAL PPP ACCURACY

- 1 week, 300 global IGS stations
- Daily position error
- Static processing

- Potential benefits of ambiguity resolution:
 - (Greatly) reduced convergence period
 - Higher positional accuracy
 - More consistent solutions
 - All resulting in more robust processing technique
- Initial attempts at fixed PPP through modeling of small satellite and receiver time mis-synchronization biases resulted in over-parameterization of model:

$$P_{3} = \rho + T + c(dt^{r} - dt^{s}) + b_{P3}^{r} - b_{P3}^{s} + \varepsilon_{P3}$$

$$L_{3} = \rho + T + c(dt^{r} - dt^{s}) + b_{L3}^{r} - b_{L3}^{s} - \lambda_{3}N_{3} + \varepsilon_{L3}$$

So question is: How to resolved PPP ambiguities – with no or limited assumptions about timing biases?

- A few methods nominally equivalent approaches have been developed to resolve PPP ambiguities, e.g.:
 - Decoupled clocks (NRCan)
 - Integer clocks (CNES)
 - Uncalibrated hardware delays (GFZ / Wuhan / Nottingham)
- 'Decoupled clock model' and 'Integer clocks' re-parameterize observation equations to isolate code biases from ambiguity estimates
 - (In principle) permits ambiguity resolution
 - Phase ambiguity moved to phase clock parameters
 - Ionosphere-free wavelength amplified with widelane
- 'Uncalibrated hardware delays' computes offsets relative to IGS clocks to access integer ambiguities via single difference
- All require additional satellite bias products for users, computed from global network solution

- Instead of ionospheric-free code and phase, use undifferenced four observables
- Ionospheric parameter is corrupted by biases
- Carry-out implicit differencing to estimate relative ionosphere
- Same way ambiguities are differenced in decoupled clock model to isolate their relative integer character
- Ionosphere parameter can provide constraint on ambiguity resolution when, e.g., loss of lock, data gap, etc. is experienced
- When all ambiguities are reset, should provide rapid *re-convergence* of solution

PPP-AR RE-CONVERGENCE – IONO CONSTRAINTS

Inside GNSS

Ask the Experts – Part 1

Sanjeev Gunawardena Research Assistant Professor Autonomy & Navigation Technology Center Air Force Institute of Technology

Sunil Bisnath Associate Professor Department of Earth and Space Science and Engineering York University, Toronto

Thomas Morley M.Sc, M.E., P.Eng. Manager Applied Technology Group NovAtel, Inc

Poll #2

Performance wise (accuracy, integrity) which one do you think is true?

- GPS + GLONASS PPP is equivalent to GPS-only PPP.
- GPS + GLONASS PPP is better than GPS-only PPP.
- GPS + GLONASS PPP is worse than GPS-only PPP.
- It is not that simple.

High Accuracy GNSS

Disclaimers:

The views expressed in this presentation are those of the author, and do not reflect the official policy or position of the United States Air Force, Department of Defense, or U.S. Government.

Components, equipment and manufacturers discussed are for information purposes only. The author does not endorse any manufacturers, products, services, or the suitability of any products referenced herein for any particular purpose

Sanjeev Gunawardena Research Assistant Professor Air Force Institute of Technology

- Contains standard precision (SP) and high precision (HP) services using FDMA modulation
- L1 center frequency for channel k: f_c=1602+k×0.5625 [MHz] where k=-7, -6, ..., 4 (1598.0625 – 1604.2500)
- P Code: Rc=5.11 Mcps, 33,554,432 chips long, 25-bit LFSR, repeats every second [Kaplan & Hegarty].
- Receiver inter-channel biases due to FDMA represents challenge for receiver designers
- Front-end group delay for each channel must be determined and measurements calibrated accordingly

www.navipedia.net/images/b/b6/GLONASS_Sig_Plan_Fig_3.png

GNSS System	GLONASS	GLONASS
Service Name	C/A Code	P Code
Centre Frequency	(1598.0625-1605.375) MHz ± 0.511 MHz	
Frequency Band	L1	L1
Access Technique	FDMA	FDMA
Spreading modulation	BPSK(0.511)	BPSK(5.11)
Sub-carrier frequency	-	-
Code frequency	0.511 MHz	5.11 MHz
Signal Component	Data	Data
Primary PRN Code length	511	N/A
Code Family	M-sequences	N/A
Meander sequence	100 Hz	N/A
Data rate	50 bps	N/A
Minimum Received Power [dBW]	-161 dBW	N/A
Elevation	5°	N/A

Source:

www.navipedia.net/index.php/GLONASS_Signal_Plan

Relevant public ICD:

• ICD L1, L2 (ed. 5.1 2008)

Also read: U. Roßbach, <u>Positioning and Navigation</u> <u>Using the Russian Satellite System GLONASS</u>, 2001

Ind	ncreasing cost and complexity				
	Technique	Pros	Cons		
	One-time factory calibration of nominal biases	Simple, supports mass production	Not sufficient for high- accuracy applications		
	Factory calibration as a function of temperature. Store calibration values in memory	Suitable for medium-volume cost- sensitive GPS/GLONASS receivers	Requires front-end temperature sensing. Longer and more complex calibration procedure.		
	Integrated closed-loop calibration using built-in 'group delay meter'	Continuous dynamic estimation of inter-channel biases using group delay measurements	Works primarily for self- contained receivers (i.e. no detached antenna). High cost and complexity.		

GNSS 'Spectral Landscape' Present & Future

GNSS PPP

Sunil Bisnath Associate Professor York University

BENEFITS:

- Measurement sensitive technique →
- More measurements + varied geometry = improved positioning

Inside

ISSUES:

- Different spatial reference systems for different systems
- Different temporal reference systems for different systems
- GLONASS is FDMA, while all other systems are CDMA
- Managing various equipment biases within and between systems

- Popular terms: "hardware biases" or "hardware delays" or "instrumental delays", referring to errors introduced in the equipment (circuitry and electronics)
- Satellite instrumental delays and receiver instrumental delays
- Some delays estimated by tracking network
- Others modeled as an additional term added to code and phase observation equations
- Often implied modeling: added to receiver noise / SV hardware delay / multipath term

P2-P1

- DCB Differential Code Bias
- DPB Differential Phase Bias
- RCB Relative Code Bias
- RPB Relative Phase Bias
- CPB Code-Phase Bias

L2–L1 P1–C1, P2–C2

- L1(P)–L1(C), L2(P)–L2(C)
- C1-L1(C), P1-L1(P), etc.

GPS + GLONASS PPP: CONVERENCE AND STABILITY

InsideGNSS

GLONASS INTER-CHANNEL BIAS ISSUES

- New GNSS signals enhancing PPP (and RTK) performance
- Most network RTK services are now GPS+GLONASS
- GPS+GLONASS PPP with AR and fast re-convergence commercially available
- Fast RTK-like initialization for PPP is still goal
- Integration of PPP and network RTK processing
- Early GPS+GLONASS+BEIDOU+GALILEO PPP results show further improvements
- Triple-frequency GPS PPP-AR simulations show very fast convergence

Thomas Morley

Real World Evaluation of PPP

Outline

- Actual antenna motion versus processing technique
- Dynamic evaluation methodology
- Real-world results dynamic antennas
 - Open sky conditions
 - Operation near trees
 - Partial obstructions
 - Operation near and through a 625m long tunnel
 - Complete obstruction for 30 seconds

InsideGNSS

Nov/Ate

Dynamic Evaluation – On-Machine Equipment Layout

5

Dynamic Evaluation – Machine Trajectory (Benign)

Dynamic Evaluation – First Hour Showing Convergence

Dynamic Evaluation – Machine Trajectory (Not So Benign)

Dynamic Evaluation – Horizontal Errors (Not So Benign)

InsideGNSS

NovAte

Dynamic Evaluation – Horizontal Speed (Tunnel)

Conclusions

- > Initial PPP convergence to dm accuracy can take tens of minutes
- Rapid reconvergence can occur with some flavors or implementations of PPP
- Dynamic performance of PPP is typically quite good
 - Based on many days of testing in real-world conditions
 - 6-8 different PPP solutions evaluated concurrently
 - Some solutions noisier than others, especially when dynamic
 - Most solutions can provide a reliable decimeter-level solution
 - Operation near trees can be challenging
 - Reconvergence performance can vary considerably after signal tracking disruption

NovAtel[®] Inc.

Ensuring your success.

Thanks for participating in today's webinar.

Poll #3

Based on what you have heard today, in my applications I plan to:

- Consider replacing a meter level solution with PPP
- Consider replacing RTK with PPP
- I have no need for PPP
- Continue to use both RTK and PPP
- Not sure. I will wait.

Ask the Experts – Part 2

Sanjeev Gunawardena Research Assistant Professor Autonomy & Navigation Technology Center Air Force Institute of Technology

Sunil Bisnath Associate Professor Department of Earth and Space Science and Engineering York University, Toronto

Thomas Morley M.Sc, M.E., P.Eng. Manager Applied Technology Group NovAtel, Inc

Inside GNSS @ www.insidegnss.com/ NovAtel @ www.Novatel.com

Thank you!

Thomas Morley M.Sc, M.E., P.Eng. Manager Applied Technology Group NovAtel, Inc