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C ooperative vehicle safety applications should preferably 
have two-meter horizontal accuracy and six-meter verti-
cal accuracy, all with a 95-percent availability. The solu-
tion must be developed to incorporate lower-cost sensor 

options, specifically, lower-cost inertial measurement units that 
can be generally characterized by the gyro drift of 100 degrees 
per hour and an accelerometer bias force of twice its mass times 
gravity (two milligals). 

Our implementation of a cooperative vehicle safety system 
uses a low-latency 5.9 GHz communication link among vehicles 
and roadside infrastructure. This enables each vehicle to con-
tinually assess the chance of a collision. If the collision prob-
ability is high, the system may generate an in-vehicle warning 
for the driver, or even automatically initiate actions to help pre-
vent the collision. A vehicle equipped with this system knows 
its own location and path, while it wirelessly monitors the loca-
tions and paths of surrounding vehicles.

These applications rely on two main technologies: (1) infor-
mation exchange using dedicated short-range communications 
(DSRC), and (2) location using GNSS, although various other 
technologies are involved.

Although GNSS satisfies the desired accuracy level in open 
areas where unobstructed signals are available, it fails to sup-
port the desired performance in dense urban environments. 
In order to achieve the set performance goals, GNSS must be 
augmented with other sensors.

In this article we describe a multi-sensor architecture 
developed to enable precise positioning capabilities in difficult 
GNSS environments (such as urban canyons) for cooperative 
vehicle safety applications. Our overall goal is to enable meter-
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accurate absolute positioning in dense urban environments 
at a low cost. 

system design: the technologies
Our solution develops a generic inertial-aided approach in 
which aiding sources can include GNSS, odometer, scanning 
lidar, and video cameras. We present the system architecture, 
describe specific system components, and evaluate its perfor-
mance with experimental data collected in actual urban test 
environments.

The integrated solution is based on generic a multi-sensor 
fusion architecture described in the article by A. Soloviev and 
M. Miller (please refer to Additional Resources). The architec-
ture utilizes a self-contained inertial navigation system (INS) 
as a core sensor. Other navigation aids generally extract their 
navigation-related measurements from external information 
which may or may not be available. When available, these 
externally dependent measurements are applied to estimate 
inertial error states and mitigate the INS output drift.

We initially derive the navigation solution from the inertial 
data, estimate inertial error states from the aiding measure-
ments, and then adjust the INS outputs.

Data fusion is performed at a tightly coupled level, where 
observable measurements are fed to a complementary Kalman 
filter, and differences between aiding measurements and pre-
dictions are computed using the inertial data. This solution 
enables a generic formulation where adding/dropping of an 
aiding source is simply achieved by adding/dropping its cor-
responding measurement observables to/from the Kalman fil-
ter without the need to redesign the entire system architecture. 

The aiding measurements evaluated as part of this effort, 
include a GPS receiver, an enhanced GPS receiver that is fre-
quency-aided by an oven-controlled crystal oscillator (OCXO) 
for clock stability, an odometer (ODO), a video camera, and a 
scanning lidar.

To support a low-cost implementation, integration algo-
rithms apply GPS carrier phase measurements for periodic 
estimation of inertial error states. These algorithms utilize tem-
poral carrier phase differences, which enable efficient inertial 
measurement unit (IMU) drift estimation without needing to 
resolve integer ambiguities. As a result, relatively low-grade 
micro-electro-mechanical system (MEMS) inertial sensors can 
be used. This reduces the cost of the inertial sensor component 
by at least an order of magnitude, when compared with tactical 
and navigation grade sensors employed in existing commercial 
off-the-shelf solutions.

The multi-sensor fusion solution was developed and eval-
uated over the following configurations: GPS/INS, GPS/INS/
clock, GPS/INS/clock/ODO, GPS/INS/clock/ODO/Video, 
and GPS/INS/clock/ODO/Lidar. All five configurations were 
implemented and initially evaluated in a high-fidelity simula-
tion environment. 

Based on the simulation analysis, the top two solution 
options were identified as GPS/INS/clock/ODO and GPS/INS/
clock/ODO/Lidar. We then tested these two further by collect-
ing experimental data in downtown Detroit, Michigan.

system architecture
Figure 1 illustrates the overall architecture of the multi-sensor 
fusion algorithm. Computations are implemented as a recur-

FIGURE 1  System architecture
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sive procedure that is executed every time a new measurement 
is provided by the inertial measurement unit (IMU). When a 
new IMU measurement becomes available, the system updates 
INS navigation outputs by propagating this new measurement 
through the INS navigation mechanization. This includes 
attitude determination, coordinate transformation, gravity 
compensation (implemented only if INS alignment has been 
completed) and, finally, integration into velocity and position 
navigation outputs. INS position outputs serve as the overall 
output of the system. 

After the inertial mechanization is completed, the sys-
tem runs Kalman filter updates. The filter estimates errors in 
inertial navigation outputs by fusing INS and reference data 
(including GPS, odometer and laser scanner data). The Kalman 
filter updates are only executed if the filter is initialized (the 
filter initialization happens simultaneously with the INS align-
ment). First, prediction is implemented. Second, estimation is 
performed. The estimation step is only performed if at least one 
reference measurement is available. Otherwise, estimated states 
are assigned their predicted values. Finally, estimated INS error 
states are applied to correct the inertial navigation parameters. 

Processing of reference measurements includes a pre-pro-
cessing step and integrity check. Pre-processing converts raw 
sensor data into the measurement observation domain that is 
used by the Kalman filter. An integrity check performs quality 
control by removing measurements such as those GPS mea-
surements corrupted by multipath or odometer measurements 
corrupted by wheel slips/spins.

Integrity checks include both an internal GPS integrity 
check and an INS-based integrity check for all reference sen-
sors. In the case of GPS, some of the corrupted measurements 
can be removed by cross-checking multiple GPS measurements 
via the parity-based integrity monitoring algorithm. 

We performed INS-based integrity checking for all the 
reference sensors, by first computing what the measurement 
should be, measuring what the actual sensor reports, and then 
comparing these with the predicted measurements, while 
removing outliers. If at least one reference measurement is 
available after the integrity check, the Kalman filter uses it to 
compute the estimates of inertial error states.

system components
Let’s take a closer look at the key components used in our can-
didate systems.

Inertial navigation. As shown in Figure 1, inertial navigation 
implements a standard strapdown INS mechanization routine 
that includes attitude determination, coordinate transforma-
tion, gravity compensation, and attitude determination steps.

Prior to INS navigation mechanization, inertial naviga-
tion states must be initialized with initial position, velocity, 
and attitude. Position and velocity are initialized using GPS 
receiver outputs estimated from temporal carrier phase chang-
es, as summarized in the next subsection. For a more detailed 
description of this technique, see the article by F. van Graas and 
A. Soloviev cited in Additional Resources. 

We determined the initial attitude by comparing compo-
nents of two non-collinear vectors at the navigation and body 
frames, using a lower-grade IMU with the gyroscope drift 
rate of about 100 degrees per hour. Standard gyro-compassing 
procedures using gravity vector and Earth rate vector are not 
applicable since the Earth rate cannot be adequately measured. 
Instead, we aligned the IMU “in-flight” using gravity measure-
ments and a unit vector collinear with the velocity vector. 

We derived navigation frame components of the unit veloc-
ity vector from GPS carrier phase-based velocity estimates. For 
body-frame components, we assumed that velocity is aligned 
with the forward-looking axis of the vehicle’s body frame. 

GPs. The GPS position solution is provided directly by the 
GPS receiver. Additional processing of GPS measurements 
includes velocity estimation to initiate the INS’s alignment, 
and an internal integrity check. GPS velocity is derived from 
carrier phase changes over time wherein the carrier phase from 
current and previous measurement epochs are used. 

Carrier phase changes are first computed then adjusted for 
satellite Doppler terms (changes in carrier phase due to the 
motion of the satellite along the receiver-to-satellite line-of-
sight, LOS) and geometry terms (changes in the carrier phase 
due to changes in the orientation of LOS vectors). 

These adjusted carrier phase changes Δφadj are applied 
for the estimation of average velocity, following the method 
described by in the previously mentioned article by van Graas 
and Soloviev:

where
 is the average velocity;

 is the average clock drift;
ΔtGPS is the GPS update interval; 
NSV is the number of visible space vehicles (satellites); 
ε is the carrier phase measurement error; 
RSV is the satellite position vector; 
R is the receiver position vector; 

  is the Euclidian vector norm; and, 
E is the LOS unit vector. 

Based on equation (1), we used a least mean square (LMS) 
estimation procedure to compute the average velocity, such that



68       InsideGNSS  s e p t e m b e r / o c t o b e r  2 0 1 1  www.insidegnss.com

cars on the road

(Note that average 
velocity and aver-
age clock drift are 
obtained.) 

We est imated 
the instantaneous 
velocity vector that 
is used to initially 
a lign the INS by 
f itting a polyno-
mial over the aver-
age velocities from 
severa l consecu-
tive measurement 
epochs.

After computing the velocity solution, an internal integrity 
check is performed on the GPS measurements. The integrity 
check procedure identifies whether abnormally large outli-
ers are present in carrier phase measurements. (This integrity 
check only detects if failures (i.e., error outliers) may be present 
without attempting to identify the failed satellite channels.) 

If the previous step identifies the presence of failures, the 
GPS carrier phase measurements are further checked based on 
INS data (as described in a later section). Failure detection is 
based on a QR-factorization parity check of the LMS velocity 
estimation. 

odometer. An internal wheel speed sensor provides the 
odometer measurements. The wheel-speed counter value is 
periodically read and used to compute ODO-based navigation 
solution. Because the counter is read directly from the sensor, 
the odometer measurements are precisely time-stamped, which 
is critical for their efficient use in the sensor fusion algorithm. 

Pre-processing of the odometer data converts the odometer 
counter increment into the units of distance used to update the 
odometer-based position estimate, which provides the input to 
the Kalman filter. The odometer position estimate is initialized 
with the INS position after completion of the INS alignment.

The following description outlines our odometer position 
solution method. First, the incremental distance S is calculated,

where ∆S is the distance increment per ODO count, and  Count 
and Countp are counter values for the current and previous 
update epochs. The distance increment is then converted into 
the body-frame displacement vector. For relatively straight 
motion, when no significant angular turns are present, a 
straight path approximation is applied, where

The odometer-sensitive axis is aligned with the y-axis of 
the body-frame. We define the coordinate system as: x-axis to 
the right of the vehicle; y-axis in the direction of motion, and 
z-axis is upward. In cases of angular turns, we use a circular 
motion approximation and calculate the incremental position 
change as follows,

where, the INS provides both the velocity vector, V, and angular 
rate vector, w.

Next, we transform the position change from the odometer 
body-frame into the navigation frame using the inertial direc-
tion cosine matrix ,

Finally, the odometer navigation solution is updated, 

Note that INS attitude is used to update the odometer navi-
gation solution. As a result, inertial attitude errors become cor-
related with odometer error states. This is taken into account 
by updating corresponding cross-elements of the Kalman filter 
covariance matrix after every ODO navigation update.

Laser scanner. Figure 2 illustrates the pre-processing of the 
laser data, which is executed if a new laser scan arrives between 
the current and previous IMU updates. The laser scanner sends 
ranging pulses and measures a distance to reflecting object(s) 
by measuring the time of flight. 

Ranging pulses are sent in the scanner measurement angular 
range. Hence, each scan image is represented by the angular 
array and a corresponding ranging measurement for each angle. 

The current system implementation uses a laser scanner 
with an angular range from 0 to 180 degrees and angular reso-
lution of 1 degree. The laser is mounted on the front edge of the 
roof of the test vehicle with a forward orientation and scans an 
approximately horizontal plane. 

Pre-processing of scan images includes line extraction, line 
matching and line list update. The procedure first extracts lines 
from the scan image.  The extraction algorithm implements 
a sample-by-sample line fit. In short, this algorithm can be 
explained as follows. The algorithm starts by taking the first 
two samples in the laser scan and fitting a line though them. 
Next, a third sample is added and a distance from this sam-
ple to the line is computed. If this distance is below a certain 
threshold (which is defined by the laser measurement errors 
and assumed characteristics of texture of scanned objects, such 
as building walls), then the sample is added to the line and the 
line parameters are updated. 

The algorithm continues till it finds a sample that does not 
fit into the line (that is, the distance from this sample to the line 
is above the threshold). At this point, a new line is started using 
this sample and the scan sample next to it. The line extraction 
algorithm continues in this manner until all the samples in the 
scan are processed. 

The lines thus extracted are characterized by their polar 
parameters: line distance, which is the distance to the line from 

Line
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FIGURE 2  Pre-processing of laser 
measurements
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the scanner, and, line angle, which is the angle between the 
x-axis of the scanner body-frame and the line’s perpendicular 
(i.e., a line that originates from the scanner location perpen-
dicular to the extracted line). Extracted lines are matched to the 
lines that were previously observed, wherein the information 
about the previously observed lines is stored in the line list. 

Laser-based navigation uses the changes in line parameters 
between scans. To compute changes in line parameters between 
scans, we must first establish a correspondence between lines 
extracted from the current scan lines and lines that were previ-
ously observed and stored in the line list. The line list is initially 
populated at the first scan. Every time a new line is observed, 
it is added to the list. 

This line-matching procedure applies an INS-based navi-
gation solution to predict what ranges and angles should be 
expected in the current scan for all the lines from the list. (The 
article by A. Soloviev et alia listed in Additional Resources pro-
vides a detailed description of the line-extraction algorithm 
and line-matching procedure.)

If these predicted values for a particular line from the list 
can be closely matched to parameters of a line extracted from 
the current scan, then a match is declared and the matched line 
pair is applied to compute laser-based navigation observables in 
the Kalman filter. Newly observed lines (i.e., lines that cannot 
be matched to any of the previously observed lines) are added 

to the line list. If a line from the list has not been observed for 
a certain period of time (which is currently set to 20 seconds), 
it is removed from the list to reduce the computational load. 

When the line is added to the line list it is transformed from 
the laser body frame to the ENU frame using INS data:

where
ρ and α are line range and angle (subscript 0 indicates the line 

list and subscript n indicates the current scan);
m is the index of the line in the current scan that cannot be 

matched to any lines in the line list;
k is the number of lines in the list before the new line is added; 

 and  are x and y components of the INS-based position 
solution; and,

 is the INS-based heading angle.
Note that the use of the INS solution for initializing the line 

introduces correlation between inertial errors and line errors. 
This correlation is taken into account by updating the Kalman 
filter covariance matrix, each time a new line is added to the list. 

Integrity check
As mentioned earlier, we apply an integrity check to remove 



70       InsideGNSS  s e p t e m b e r / o c t o b e r  2 0 1 1  www.insidegnss.com

cars on the road

measurement outliers. The GPS integrity check is applied to 
the GPS data, and an INS-based integrity checks odometer and 
laser scanner data. 

If the internal GPS integrity check detects a failure or an 
insufficient number of satellites (fewer than five), then an INS-
based integrity check is also implemented. The latter integrity 
check predicts measurements using inertial data, compares 
predicted measurements with actual sensor measurements, 
and removes those measurements for which large discrepan-
cies exist between predicted and measured values. 

Integrity is checked for GPS position and adjusted carrier 
phase changes, the odometer navigation solution, and changes 
in ranges and angles of lines extracted from scan images. If 
these measurements pass integrity checks, we enter them as 
measurement observables in the Kalman filter used to estimate 
the INS drift terms.

The main principle of the INS-based integrity check is for-
mulated by equation (9):

where
 is an actual sensor measurement that is generally a function 

of position vector (R) and angular orientation ( );  
 is a predicted measurement based on inertial data ;

σδu is the standard deviation of the measurement/prediction 
discrepancy that is computed based on measurement error 
covariance (for the fault-free case) and covariances of INS 
prediction errors; and

γ is the integrity check scaling factor:  its choice is a trade-off 
between the probability of false alarm and probability of 
missed detection; currently γ=5 is chosen.
Functions u are defined as follows: 

For GPS position measurement

In this case, the sensor measurement function is computed 
based on the GPS receiver position solution that is converted 
into the local East-North-Up (ENU) frame. INS-based esti-
mates are calculated as

where LGPS is the lever arm vector from the IMU to GPS receiver 
with vector components being resolved in the IMU body frame.
For GPS adjusted carrier phase time difference

Sensor measurement is derived by differencing GPS car-
rier phase measurements over time and then compensating 
them for SV Doppler and geometry changes as described by 
van Graas and Soloviev:

Note that adjusted carrier phase values are computed for 
all the satellites in view regardless of the fact if the number of 
satellite is sufficient for the GPS-based navigation or not: i.e., 
even if fewer than four satellites are available. The INS-based 
measurement estimate is calculated as follows:

where:
(,) is the vector dot product; 
e is the receiver-to-satellite LOS unit vector;

 is the INS-based position change between GPS updates;
tn and tn-1 are the timing epochs of the current and previous 

GPS updates, accordingly, and,
Δδtrcvr is the change in the receiver clock bias between GPS 

updates. This change is estimated by the Kalman filter.
For the odometer-based solution

where LODO is the IMU-to-odometer lever arm.
For laser scanner line ranges

where LLaser is the IMU-to-laser lever arm vector. In (16), line k 
from the line list is assumed to be matched to line p from the 
current scan. 
For laser line angles:

where ψ is the vehicle heading angle that is estimated based on 
the INS direction cosine matrix.

Kalman Filter
The Kalman filter fuses reference data and inertial data to esti-
mate inertial drift terms or, equivalently, inertial error states. 
At each IMU update (see Figure 1), the filter first implements a 
prediction step where the IMU error states are predicted based 
on their previous values and a time-propagation model, also 
referred to as the system dynamic-state model.

Next, the estimation step is carried out. If at least one refer-
ence measurement is available after the integrity check, refer-
ence measurements are fused with predicted system states (that 
is, predicted INS error states) to compute updated estimates of 
the system states.

If no reference measurements are available, state predic-
tions simply become state estimations. Generally speaking, the 
estimation step uses new information that is provided by the 
reference measurements to update predicted system states. 
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The estimation step can use multiple reference source com-
binations, such as GPS + odometer or GPS + laser data, by 
weighting measurements from each reference source according 
to their quality, which is formally characterized by covariances 
of measurement errors.

Reference measurements are formulated as complementa-
ry pairs, or differences between the actual measurement and 
measurement value that is predicted based on inertial data, 
and notated as . Formulation of the measured and 
estimated u functions for the Kalman filter is exactly the same 
as their formulation for the integrity check. Specifically, equa-
tions (10) through (17) define the complementary filter mea-
surements for GPS (position and carrier phase), odometer, and 
laser scanner, respectively.

The filter states include the following:
• INS error states (21 states total)

- Position errors (3 states)
- Delta position errors for the error in position change 

between consecutive GPS update epochs (3 states)
- Velocity error states (3 states)
- Attitude error states (3 states)
- Sensor bias states (3 states for gyros and 3 states for 

accelerometers)
- Delta attitude error states for the error in the attitude 

change between consecutive GPS update epochs (3 
states) 

• GPS receiver clock states (3 states)
- Receiver clock bias
- Receiver clock drift
- Receiver clock drift accumulated between consecutive 

GPS update epochs
• Odometer states (10 states)

- Odometer position errors (3 states)
- Odometer scale-factor (1 state)
- Misorientation between odometer and IMU body-

frames (3 states)
- Delta position error propagation between the last update 

of the odometer counter and the current IMU update (3 
states)

• Laser states (3+2Nlines states, where Nlines is the number of 
lines in the line list)
- Misorientation between laser and IMU body-frames (3 

states)
- Line errors including range error states and angular 

error state (2 states per line)

test results
We evaluated the multi-sensor fusion solution developed 
with actual  data collected in test drives through downtown 
Detroit, where streets were lined with multi-story buildings 
that obstructed GPS signals, often reducing visibility to less 
than four satellites (see Figure 3). 

Much of the testing was performed in two-day blocks with 
attempts to maximize the cover of the changing satellite con-
stellation by 10-hour test sessions shifted by 4 hours between 

neighboring days. The data was processed off-line by the posi-
tion estimation algorithm running on commercial computa-
tional software on a PC.

The vehicle/equipment setup includes: 
• A high-precision dual-frequency GPS receiver capable of 

receiving corrections from the Wide Area Augmentation 
System (WAAS) 

• High-sensitivity GPS receiver 
• External oven controlled crystal oscillator (OCXO) clock 

connected to the high-precision receiver for clock aiding
• A lower-cost IMU characterized by the gyro drift of 100 

degrees per hour and accelerometer bias of two milligals
• Internal wheel speed sensor, with resolution of five pulses 

per rotation
• Lidar
• An integrated GNSS/inertial system coupled with a ring 

laser gyro for position reference when conditions allowed.
Figure 4 shows the vehicle’s equipment configuration.
Measurements of all non-GPS sensors (IMUs, wheel speed, 

and lidar) were time-stamped using a 1 PPS (pulse per second) 
signal from the high-precision GPS receiver and the receiver 
timing message.
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FIGURE 3  The test route (above) and an example of test drive results based 
on satellite visibility conditions and corresponding rrors, Day 6, Run 1. 
The number of satellites takes on fractional values due to interpolation.



72       InsideGNSS  s e p t e m b e r / o c t o b e r  2 0 1 1  www.insidegnss.com

Figures 5 and 6 show trajectories of the GPS-only solution 
for the high-precision GPS receiver with WAAS corrections 
and the high-sensitivity GPS receiver. 

The presence of large outliers for both receivers is clearly 
visible, demonstrating that the GNSS technology by itself is 
not capable of supporting the accuracy performance goals in 
dense urban environments.

Figures 7 and 8 show test trajectories reconstructed by the 
GPS/INS/clock/ODO and GPS/INS/clock/ODO/Lidar solu-
tions.  

Augmentation of GPS positioning with other sensor modal-
ities clearly improves the solution accuracy. Both GPS/INS/
clock/ODO and GPS/INS/clock/ODO/lidar configurations 

demonstrate the reconstruction of smooth trajectories. Tra-
jectory estimation is consistent for all seven test trajectories 
shown with the position solution staying within the actual lane 
of vehicle motion for the majority of the test duration.

Figure 9 provides a quantitative characterization of the solu-
tion accuracy derived by comparing the multi-sensor fusion 
solution with the reference trajectory, constructed as a com-
bination of surveyed reference points and the GNSS/inertial 
solution (for those portions of the trajectory where the surveyed 
reference was not available).

These results indicate that the GPS/INS/clock/ODO solu-
tion satisfy the accuracy goals — two meters horizontal, six 
meters vertical, 95 percent of the time — for a majority of the 
test trials. Addition of lidar data to the sensor fusion further 
improves the positioning accuracy while reducing the errors 
to the acceptable level for the limited cases of error outliers.  

conclusion 
We have presented a multi-sensor fusion solution for satisfying 
the accuracy goals of cooperative vehicle safety applications in 
dense urban environments, with the system designed to oper-
ate with a lower-cost IMU. Two configurations of the system 
architecture — an integrated GPS/INS/clock/ODO and a GPS/
INS/clock/ODO/lidar — were tested in urban environments in 
downtown Detroit. Results demonstrate that the fused multi-
sensor solution drastically improves positioning accuracy 
compared to GNSS-only position estimation and met accuracy 
goals for the majority of test trials. Future work should focus 
on decreasing the cost of the system while maintaining and/or 
enhancing the performance goals via a trade-off calculation of 
the optimal sensor set based on performance-per-cost.
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FIGURE 4  Sensor configuration for data collection on test vehicle
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Propak-V3-L1 from NovAtel Inc., Calgary, Alberta, Canada. 
The integrated GNSS/inertial unit was NovAtel’s SPAN-SE with 
an HG1700 AG58 ring laser gyro from Honeywell Aerospace, 
Phoenix, Arizona. The high-sensitivity receiver was an LEA-
5T from u-blox AG, Thalwil, Switzerland. The lower-cost IMU 
was an MMQ-50, from Systron Donner Inertial, Concord, 
California, USA. The laser scanner was the LMS-200 Lidar, 
from SICK AG, Waldkirch, Germany. Matlab software from 
The Mathworks, Inc., Natick, Massachusetts, USA, was used 
to process the results.
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FIGURE 7  Test results for GPS/INS/clock/ODO configuration for seven test 
trajectories

FIGURE 8  Test results for GPS/INS/clock/ODO/Lidar configuration, for 
seven test trajectories

FIGURE 9  Selected performance analysis results for multi-sensor position 
estimation


