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Generally, a multipath signal in 
positioning is often considered 
an undesirable phenomenon 
that needs to be suppressed. A 

reflected GNSS signal is one kind of mul-
tipath, also known as a scattered signal. 
Usually, the reflected signal is regarded 
as an error source that deteriorates the 
positioning accuracy. But, in fact, these 
scattered signals can be used in many 
remote sensing applications. 

This article will introduce the GNSS-
reflection (GNSS-R) remote sensing con-
cept and, taking GPS reflected signals 
as an example, demonstrate the char-
acteristics of the these signals and our 
method for processing them to extract 

environmental data of interest. Then, we 
will describe our software-based receiv-
ing and processing system and tests per-
formed for data collection over sea and 
grassland areas, presenting the related 
results. 

GNSS-R Remote Sensing: 
The Concept
GNSS-reflection (GNSS-R) remote sens-
ing is a new category of satellite naviga-
tion applications. Essentially, it entails a 
method of remote sensing that receives 
and processes microwave signals reflect-
ed from various surfaces to extract use-
ful information about those surfaces. 

In this process, the GNSS L-band sat-

ellite acts as the transmitter and an air-
plane or low earth orbit (LEO) satellite, 
as the receiving platforms. For altimetry 
applications, a GNSS-R receiver can also 
be placed on the land.

The advantages of GNSS-R remote 
sensing over satellite scatterometry and 
radar altimetry are as follows:
1) no additional transmitter;
2) plenty of signal sources, including 

GPS, Galileo, GLONASS, and Bei-
dou/Compass;

3) use of spread-spectrum communica-
tion technology to enable the receiver 
to receive weak signals;

4) wide range of uses for such things as 
sea-wind retrieval, seawater salinity 
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detection, ice-layer density measurement, humidity mea-
surement of land, and detection of moving targets.
Take sea-wind retrieval, for example: the reflected signals 

provide a rough correlation with independent measurements 
of the sea wind. 

Figure 1 shows the signal power of scattered signal with 
respect to sea roughness.

Figure 2 further defines the subsections of a signal reflection 
region and the associated effects on a GNSS signal. The blue 
arrow indicates the specular point, where the reflected signal 
is the strongest. The red ellipses represent the equal-code delay 
lines, and we call the uneven ring belts between them Fresnel 
zones. The black curves are the equal-Doppler lines. Finally, the 
small black region is a resolution cell formed by the crossing of 
Fresnel zones and Doppler lines. 

For the GPS reflected signal, the strong reflection at L-band 
frequencies from water and metal surfaces can help reception of 
weak signals. GPS satellites are far from the Earth and the Fres-
nel belts are small, about 0.01 and 0.4 kilometers as observed 
from airplane and satellite platforms, respectively. Through 
analyzing the reflected signal and comparing it with the direct 
one, we can extract some characteristic parameters about the 
reflection surface.

Characteristics of GPS Reflected Signal
Reflected GPS signals have a distinct signature or set of charac-
teristics that are different from directly received signals. Some 
of the most important are:
1) Polarization. The GPS signal is right-hand circular polar-

ized. When it is reflected by the surface, the signal might 
change into left-hand polarization. So, a left-hand circular 
polarization (LHCP) antenna is used to collect reflected 
data.

2) Code delay and Doppler shift. The reflected signal has to 
propagate an extra path segment compared with the direct 
one, thus causing an additional time delay. In this article, we 
use the equation 2h∙,sin-θ.= c∙τ to estimate the extra delay 
of the specular point. 
In a former study, we considered the Dopplers of the direct 

and reflected signals as being the same, but, in fact, the Doppler 
changes after reflection. Taking this into account, first we use 
the Doppler of direct signal as that of the reflected one, and 
after calculation, we can get the true Doppler of the reflected 
signal.

3) Correlation. The correlation characteristic can be expressed 
by the integral function of correlation. For the direct signal, 
it can be described as:

But for the reflected signal, it is:

where 
a(t) : local C/A code sequence
s(t) : data received by the receiver
Ti. : time interval of integration
τ0: estimated code delay of specular point
τ : code delay within {-M,+N} which need to be determined 
by the user.

We get significant correlation only if the code delay of a(t) 
and s(t) is the same and the Doppler shift between them is cor-
rectly compensated.

Figure 3 compares the direct and reflected signals in terms 
of code delay. The data was collected in a flight trial at an alti-
tude of about 600 meters. The results show that, compared with 
the direct signal, the reflected signal’s peak value arrives about 
3.5 chips later, and the peak correlation value is lower.

FIGURE 1  Signal power with respect to sea roughness expressed in terms 
of code delay

FIGURE 2  Reflection area

FIGURE 3  Comparison between direct and reflected signal
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System 
Architecture
The GNSS-R pro-
c e s s i n g  s y s t e m 
consists of a soft-
ware-based GPS 
receiver with a pair 
of antennas (one 
right-hand polar-
ized and the other 
left-hand polarized 
for reception at the 
L1 band) and dual 
front-ends, and a PC 
for signal process-
ing. The front-end is 
used to down-con-
vert the GPS signal 
to 4.6420 MHz and 

digitize it with two bits at a sampling 
frequency of 20.454 MHz. 

Figure 4 is a schematic of the hard-
ware architecture. Figure 5 shows the 
RHCP antenna, a general GPS aviation 
antenna for direct signal, and the LHCP 
antenna for reflected signal, a four-array 
antenna with a gain of 12 decibels. The 
PC contains the analyzing algorithm, 
serves as the processing platform, and 
outputs the results. 

Software and Algorithm 
Details
The GNSS-R software has the overall 
tasks of reading the collected data, pro-
cessing it, and outputting the solutions. 
At the same time, it must also provide 
the users with status information about 
each channel and facilitate user con-
trol.

The software has three main tasks: 
parameter configuration, signal pro-
cessing, and outputting results both in 
data files and on a graphic display. (See 
Figure 6.)

Figure 7 shows the main user inter-
face (UI) and highlights its seven key 
parts. On the left side of the UI screen, 
from top to bottom, are receiver infor-
mation (including the position of the 
receiver, and such data as latitude, lon-
gitude, height, and speed), the status of 
12 direct (D) channels, and the status of 
12 reflected (R) channels. 

The right side of the screen, from 
top to bottom, includes the distribu-
tion of satellites being tracked, the 
user-selectable PRN of the ref lected 
channel, power ratio (that is, the power 
of direct signal over that of reflected 
signal), and the graphical information 
of the signal power with respect to code 
delay and Doppler, which changes as 
the data are calculated by the process-
ing module. 

The processing module, outlined in 
red in Figure 6, is the core module of 
the software system. Through compar-
ing the direct signal with the reflected 
one, we can see that both the code delay 
and Doppler of the signal change after 
ref lection. So, instead of seeking the 
maximum correlation peak, we compute 
the correlation power at different chips 

FIGURE 4  Comparison between direct and reflected signal

FIGURE 5  Antennas: LHCP antenna (left) and RHCP antenna (right)

FIGURE 6  Software flowchart

FIGURE 7  Main user interface of the system
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and frequencies away from the position 
of the prompt correlator, a technique 
that we call open-loop processing. 

Figure 8 shows the processing flow-
chart of the signal-processing module. 
Once the direct channel has tracked one 
satellite, the reflected channel uses the 
direct channel’s code delay and Doppler 
as reference. Then the reflected correla-
tor calculates the correlating power at 
various chip and frequency intervals, 
according to the user’s definition. 

The dashed line refers to another 
processing approach. The extra delay 
caused by the additional path that the 
reflected signal has to travel could be 
calculated after determining the navi-
gation solution, thus helping us find the 
true specular point that is the reflected 

signal’s peak value point with efficient 
processing. 

Finally, through analyzing the power 
profile and subsequent modeling, we can 
extract the characteristic parameters of 
the reflecting surface. This latter step 
is not the focus of this paper; however, 
readers can find further information 
on this subject in the paper by V. U. 
Zavorotny et alia listed in the Addition-
al Resources section at the end of this 
article.

Dynamic Test: Airborne Test 
Results
Figure 9 shows the test setup in an air-
plane that was used to collect sea-reflect-
ed data. The RHCP and LHCP antennas 
were mounted on the top and belly of 

the plane, respectively, with the RHCP 
antenna zenith-oriented and the LHCP 
antenna nadir-oriented to collect signals 
reflected from the sea. The flying altitude 
was up to 5,000 meters with a maximum 
flying speed of 100 m/s.

The data on the left side of Figure 10 
represent results from the flight test in 
terms of the correlation value versus 
various code delay and Doppler values. 
The code and Doppler intervals are one-
eighth chip and 100 Hertz, respectively. 

The right-hand image shows that 
when the Doppler difference is 0 Hertz, 
the signal power is the strongest and 
gets weaker as the Doppler differences 
become bigger.
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According to the modeling and ana-
lyzing, we can obtain a measurement 
precision of 2 m/s for wind speed when 
the code interval is a half-chip and the 
Doppler interval is 250 Hertz. 

Static Test Results: Grassland
We use grassland static test data to 
demonstrate the possibility of using our 
system in remote sensing of land areas. 
Figure 11 shows the test setup that was 
used to collect grassland reflected data.

  Similar to the flight test, the RHCP 
and LHCP antennas were mounted on 
a shelf with the RHCP antenna oriented 
toward zenith and the LHCP antenna 
facing the grassland from which the sig-
nal reflections would arrive. After col-
lecting data for a while, we poured water 
on the grassland to see if the reflected 
signal is sensitive to soil humidity.

Figure 12 shows the waveforms of the 
reflection coefficient (vertical scale). At 
point 211, we began to pour water on the 

reflecting surface, and we can see that 
the reflection coefficient becomes bigger 
after that.

Conclusions
This article introduced concepts about 
using GNSS-R in remote sensing and the 
related experiments we performed over 
sea and land using reflected GPS signals. 
We described our software-based receiv-
ing and processing system and displayed 
the processing results of the data collect-
ed in the two tests. 

The results indicate that the reflected 
signal power is sensitive to the sea-wind 
and soil humidity, thus proving that 
our algorithm is correct and raising the 
possibility of using our software-based 
system in remote sensing.

Future work will include testing 
our system in other applications such 
as detecting the age of ice as well as 
improving the system accuracy for new 
applications.
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