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T wo or more GNSS antennas mounted on one platform 
may be used as a viable attitude-sensing tool. Although 
less precise than other sensors, GNSS-based attitude 
determination is relatively inexpensive and, most 

importantly, drift-free, unlike inertial sensors.
The orientation of a body with respect to a given reference 

frame can be estimated by employing two or more antennas. 
Precise baseline estimates are made available by processing 
incoming GNSS signals. These can be directly translated into 
angular estimations of attitude, the accuracy of which depends 
primarily on two factors: GNSS observation quality and the 
length of baselines between antennas on a platform.  Often 
one has no control over the latter, because the size and geom-
etry of the platform limit the maximum distance at which the 
antennas can be placed. Thus, the challenge of obtaining precise 
angular estimates relies on observation accuracy.
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This article explores the viability of attitude estimation using a 
GNSS receiver capable of tracking carrier phase signals to precisely 
estimate a platform’s orientation. It introduces a new ambiguity-
attitude estimator, in which the two estimation problems — ambiguity 
resolution and attitude estimation — are coupled and resolved in 
an integral manner. The authors test the method and apply it to the 
challenge of flying multiple platforms in formation using relative 
positioning between the platforms. 
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Although GNSS code observations may be used to derive 
an attitude solution, we generally prefer not to rely solely on 
these measurements, because for most applications code-based 
accuracy is inadequate. Alternatively, carrier phase–based 
position solutions are two orders of magnitude more accu-
rate; however, exploiting carrier phase observations is not a 
trivial problem.

Only the fractional part of the incoming GNSS phase signal 
can be detected, making the phase ambiguous by an integer 
number of full cycles. Correct integer values must be deter-
mined by resolving these ambiguities in order to use the carrier 
phase observations in the attitude estimation process. 

Figure 1 illustrates the large difference that occurs between 
code-based, or float, and carrier phase-based, or fixed, attitude 
solutions using a two-meter static baseline. Only the fixed 
phase-based solution is capable of sub-degree accurate angu-
lar estimations, an improvement of two orders of magnitude 
compared to the float solution.

Given a matrix of baseline coordinates B and a matrix of 
local baseline coordinates F relative to the platform, estimating 
the platform attitude is found using the orthonormal rotation 
matrix R that transforms B into F, with B = RF. This general 
formulation applies to any attitude sensor that relies on baseline 
observations to derive the platform orientation.

GNSS-based attitude estimation is based on the same work-
ing principle: processing code and phase observations to yield 
baseline estimates, which are then used to estimate the attitude 
angles. However, instead of using the traditional sequential 
approach that de-couples ambiguity resolution and attitude 
determination into two steps, we formulate the estimation 
problem in order to solve the integer and attitude estimation 
problems in an integral manner. 

To do this, we first formulate the proper functional GNSS 
attitude model, as will be shown in the following section, then 
solve it with a new attitude-ambiguity estimation procedure, 
using the principles of Integer Least Squares (ILS). The method 
solves for the integer ambiguities by including the whole set of 
geometric constraints relative to the local baseline frame. In 
this way we can achieve a significant improvement in ambigu-
ity resolution performance, although at a computational price: 
this constrained ILS method is inherently more complex than 
unconstrained ILS implementations, such as the popular Least-
squares AMBiguity Decorrelation Adjustment (LAMBDA) 
method. 

In order to reduce the ILS method’s computational expense, 
we have developed efficient and numerically fast search algo-
rithms to search for the integer minimizer. We will present 
results from two flight tests and compare the capability of both 
the unconstrained LAMBDA and the MC-LAMBDA attitude 
determination methods. 

This novel formulation of the attitude-ambiguity estimation 
problem can be used to enhance relative positioning solutions, 
of particular importance for formation flying applications. We 
discuss these results in the final section.

The GNSS Attitude Model
We cast the set of double-difference (DD) GNSS code and phase 
observations obtained by tracking n + 1 satellites on a single 
frequency into a linear(ized) model,

where, E(·) is the expectation operator, y is the vector of DD 
code and phase observations, z is the vector containing the n 
unknown integer-valued ambiguities, and b is the vector of 
real-valued baseline coordinates. We limit our treatment to 
single-epoch scenarios.

For attitude determination applications, the distance 
between antennas is usually limited to few meters, and rarely 
exceeds tens of meters. In this case, we may disregard all the 

FIGURE 1  Heading, bank and elevation angles of an actual platform carry-
ing two perpendicular two meter-long baselines. The attitude solutions 
are shown for both the derived, or float, measurements (top), as well as 
the carrier phase-based, or fixed, measurements obtained after having 
correctly resolved the integer ambiguities (bottom). Precision differs 
between the methods by two orders of magnitude. Gray dots represent 
the two-dimensional projections on each of the three coordinate planes.
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atmospheric delays, which are cancelled by the differencing 
operations. The only real-valued unknowns are thus the base-
line coordinates.

The relationship between code and phase observables, y, 
and the two vectors of unknowns is given by the matrices A, a 
2n × n matrix containing the carrier wavelength, and G, a 2n 
× 3 matrix of DD unit line-of-sight vectors. 

We assume a Gaussian noise distribution for the collected 
observables, whose dispersion D(y) is characterized by the 
variance–covariance (v–c) matrix Qyy. The integer nature of 
the ambiguities is given explicitly through the notation 
, whereas the baseline vector belongs to the space of real vec-
tors, . Model (1) can be extended for arrays of, say, m + 1 
antennas. So, the multi-baseline model becomes,

where Y is the 2n × m matrix whose columns are the linearized 
DD code and phase observations at  each baseline, Z is the n 
× m matrix whose columns are the integer-valued ambiguity 
vectors at each baseline,  and B is the 3 × m matrix whose col-
umns are the real-valued baseline coordinates. The matrix QYY 
describes the dispersion of the vector of observables vec(Y), 
where vec is the operator that stacks the columns of a matrix.

One way to derive the attitude of the platform is to solve for 
the unknowns in model (2), and then estimate the rotation matrix 
which transforms the baseline matrix B into the local (body-
frame) baseline coordinates F. This is the classical approach 
used in many GNSS-based attitude algorithms available in the  
literature.

However, we can significantly improve this approach by 
including the attitude determination problem from the start. 
We replace the matrix of unknown baseline coordinates B by 
the unknown rotation matrix R, following the transformation 
B = RF. The resulting GNSS attitude model is 

where the rotation matrix belongs to the class of 3 × 3 orthonor-
mal matrices O3x3  for which RTR=I3. The single-epoch model 
(3) is much stronger than model (2), by virtue of the additional 
geometrical constraints.

Multivariate Constrained Integer  
Least Squares
The GNSS attitude model (3) can be solved in the context of 
the ILS theory. The solution follows two steps: float estima-
tion and attitude-ambiguity estimation. The float solution is 
the least-squares solution of (3), in which all the constraints 
are neglected. This solution is obtained as

The v-c matrix associated with the float solution is obtained by 
inverting the normal matrix N. The float estimations  and  
are driven by the precision of the code observables, and thus 
are not very precise.

In their text, GPS for Geodesy (cited in Additional Resourc-
es), P. J. G. Teunissen and A. Kleusberg demonstrated that by 
using the float solution as the initial step, that minimizing the 
QYY–weighted, squared norm of residuals in (3) is equal to mini-
mizing the sum-of-squares, thus:

with the notation 
The constrained ILS Equation (5), with the new ambiguity 

objective function C(Z), is the minimization problem to be 
solved. In the unconstrained ILS theory, real-valued unknowns 
are not constrained, and the last term on the right-hand side of 
(5) can always be made zero by taking R = (Z) for any integer 
ambiguity matrix. The solution then becomes the integer 
matrix that minimizes the squared weighted norm 

However, this cannot be applied to the constrained approach 
in which the sought attitude matrix R must be orthonormal. 
The minimization problem of Equation (5) is more complicated 
to solve than the unconstrained version. However, by relying on 
a much stronger underlying model, the constrained method is 
capable of improving the ambiguity solution rate. 

No analytical solutions for integer minimization problems, 
such as appear in (5), are known. The ambiguity matrix has to 
be numerically determined from the set of admissible integer 
candidates, where  

The size of the set is defined by the scalar χ2, whose value 
should be small enough to limit the computational burden but 
still be large enough to guarantee the non-emptiness of Ω(χ2). 

For unconstrained problems we can assign a proper value 
relatively easily to χ2 by making use of a bootstrapped integer 
solution. Integer bootstrapping uses covariance information 
from the float ambiguity covariance matrix to sequentially 
round the float ambiguities. 

For the constrained approach this turns out to be much 
more challenging because of the very large weighting of the 
second norm in C(Z). As the precision of  is governed by 
the very precise phase measurements, the entries of v-c matrix 

 are much smaller than those of . Therefore, the sec-
ond term in C(Z) is weighted more heavily than its first term, 
and consequently,
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A typical example is given in Figure 2. The value of χ2 is 
calculated from an integer bootstrapped matrix Zboot for the 
second flight test described later on. The scalar χ2 = C(Zboot) is 
visualized and compared with the value 

Their four-order difference in magnitude is due to the dif-
ference in magnitude between the phase-variance and code-
variance.

This large difference in magnitude is the main difficulty that 
arises when searching for the integer minimizer, , of C(Z). The 
evaluation of the cost function C(Z) involves the solution of a 
constrained least-squares problem to extract the orthonormal 
matrix R. If the number of candidates for which this has to be 
done exceeds a reasonable value, the search becomes too time-
consuming and impractical. 

In order to overcome this difficulty, we introduce the Mul-
tivariate Constrained LAMBDA (MC-LAMBDA) method, 
which modifies the popular LAMBDA method to tackle con-
strained ILS problems such as (5).

MC-LAMBDA: Fast Implementation of 
Constrained ILS
We devised a fast numerical approach for solving Equation (5) 
based on the LAMBDA method by exploiting two properties 
of the cost functions. 

First, similar to what is done in the standard, unconstrained 
LAMBDA method, the ambiguities are decorrelated. This 
partially mitigates “halting” problems, by reducing the set of 
independent integer ambiguities which are not contained in 
the search space, given any initial set of independent integer 
ambiguities.

Then, in place of the extensive search algorithm, we imple-
ment an alternative method based on approximating functions 

that are easier to evaluate than C(Z). We define two bounding 
functions using the smallest (λmin) and largest (λmax) eigenvalues 
of :

where  is the i-th column of  and the inequalities are 
derived from the rules of the scalar product between vectors.

Based on these bounding functions, we devise two efficient 
search strategies for the constrained ILS minimization, the 
expansion approach and the search and shrink approach. The 
first approach works by enumerating all the integer matrices 
contained in a small set of admissible candidates and iteratively 
increasing the search space until the minimizer is found.

The search and shrink approach takes the opposite 
approach: it starts from a large set and proceeds by iteratively 
shrinking the size of the search space until one candidate is 
found, namely, the minimizer. 

The two search strategies provide an efficient method for 
identifying the integer minimizer, by fixing the initial size of 
the search space and speeding up the search by avoiding the 
computation of the constrained LS problem a large number of 
times. The cost function C(Z) is then evaluated only for a small 
set of integer candidates.

This solution achieves a proper use of the bounding func-
tions C1(Z) and C2(Z). Further improvements could be obtained 
by employing tighter bounding functions.

A Comparison of Attitude Estimation 
Algorithms
Given an integer matrix of ambiguities, Z, we estimate the plat-
form attitude by solving the constrained LS problem

where,  is the orthonormal matrix 
obtained by projecting the data vector 

 onto the multi-dimensional 
curved manifold defined by the geometric 
constraints of the normality and orthogo-
nality of the columns of R. We need to be 
able to extract the solution of (9) in a timely 
manner, in order to reduce the overall com-
putational time of the ambiguity search.

An analytical solution to Equation (9) 
has been known since the 1960s only for a 
diagonal matrix , a case known as 
Wahba’s problem. Various numerically effi-
cient methods have been proposed to solve 
for Wahba’s problem, such as the QUater-
nion ESTimator (QUEST), the Fast Opti-
mal Attitude Matrix (FOAM), the EStima-

FIGURE 2  Demonstration of the large values of χ2 in Equation (7). The value χ2=C(Zboot) is a few orders 
of magnitude larger than 

 

for the same bootstrapped integer matrix Zboot. 
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tor of the Optimal Quaternion (ESOQ) or the Second ESOQ 
(ESOQ2) algorithms.

Although fast, these methods only approximate a solution 
to Equation (9) when the matrix  is fully populated. 
Hence, in order to rigorously solve the nonlinear LS problem 
Equation (9), we need to employ alternative methods. Three 
examples of such methods are:

(a) the Lagrangian Multiplier Method, which aims to find 
the stationary points of the Lagrangian function,

where [μ] is the 3 × 3 symmetric matrix of Lagrangian mul-
tipliers.

(b) the Euler Angle Method, which re-parameterizes the 
attitude matrix in terms of the vector of Euler angles ε, and 
applies Newton’s iteration method to find the minimizer of the 
(unconstrained) nonlinear LS problem, 

(c) the Quaternion Method, which re-parameterizes the atti-
tude matrix in terms of quaternions, , and solves for the sta-
tionary points of the Lagrangian function,

Methods (a), (b) and (c) rigorously solve Equation (9), but 
are generally slower than the approximated methods, SVD, 

EIG, QUEST, FOAM, ESOQ, and ESOQ2.  Figure 3 illustrates 
the simulation results obtained by comparing the approximat-
ed methods with the iterative algorithms (a), (b) and (c) , in 
terms of floating-point operations and processing time. The lat-
ter is given only to compare the relative performance between 
approaches. The absolute values may vary largely depending 
on hardware and implementation.

The approximation techniques outperform the iteration 
techniques because the number of required floating-point oper-
ations in the former is two to three orders of magnitude lower.

Among the second set of methods, the Lagrangian multi-
plier technique generally requires the highest number of opera-
tions, making it the least efficient method, while the Euler angle 
method and the Quaternion parameterization provide better 
overall results. Figure 4 shows the corresponding mean, maxi-
mum and minimum computational times marked during the 
simulations. The Lagrangian parameterization method gener-
ally takes the longest time to converge, whereas the quaternion 
and Euler angle methods show better results. Note that higher 
number of floating operations does not directly translate into 
longer computational times, because modern processor archi-
tectures efficiently operate by means of multi-threading and 
parallel processing.

Application Example: Aircraft Attitude 
Determination
The newly developed MC-LAMBDA method is being tested 
on a wide range of platforms, while varying antennas/receiv-
ers grade, constellation availability and quality, and platform 

dynamics. The most interesting test results 
obtained to this date have been from apply-
ing this method to data collected on a fly-
ing platform.

Several flight tests have been performed 
aboard the Cessna Citation II PH-LAB. This 
is an aircraft owned and operated jointly by 
the Delft University of Technology (DUT) 
and the Dutch Nationaal Lucht-en Ruim-
tevaartlaboratorium (NLR, National Aero-
space Laboratory) that is equipped with 
various test systems and facilities, including 
a selection of GPS antennas. 

The first flight analyzed took place on 
June 2, 2005, in the north of The Nether-
lands, using a single GNSS receiver con-
nected to three antennas: one placed on the 

working papers

FIGURE 3  Mean number of floating-point operations for different attitude estimation methods , 
per number of baselines (or number of  antennas+1) employed. The gray bars span between the 
maximum and minimum numbers obtained for each algorithm.  104 course solutions generated via 
Monte Carlo simulations.

2 3 4 5
102

103

104

105

106

Number of baselines

Nu
m

be
r o

f f
lo

at
in

g−
po

in
t o

pe
ra

tio
ns

 

Euler angles 
(Gauss−Newton)

Euler angles 
(Newton)

Lagrangian 
multipliers
Quaternions
QUEST
FOAM
ESOQ
ESOQ2
SVD
EIG

Unaided, single-frequency, 
single-epoch success rate [%]

LAMBDA 5.8

MC-LAMBDA 81.5

TABLE 1.  First flight test. The unaided single-epoch, 
single-frequency success rate (%) for the LAMBDA 
and MC-LAMBDA methods.
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middle of the fuselage, and two L1 anten-
nas — one placed at the end of the left wing 
and the other on a boom on the nose. The 
receiver logged one-hertz data during the 
flight test, between 11:42 and 13:20 UTC 
(Coordinated Universal Time). The number 
of tracked satellites, PDOP, and horizon-
tal trajectory of the flight (ground track) 
are shown in Figure 5. The data was then 
processed with both the unconstrained 
LAMBDA and MC-LAMBDA methods, 
and the single-frequency, single-epoch suc-
cess rates obtained are reported in Table 1. 

In computations using the collected 
data, the LAMBDA method was unable to 
provide correct integer ambiguities from 
a single-epoch set of observations more 
than 5.8 percent of the time, whereas the 
MC- LAMBDA method largely improves 
the fixing rate, with 81.5 percent of the 
epochs correctly resolved, thus providing 
a reliable epoch-by-epoch attitude solution 
for the largest part of the flight.

During the flight the pilot performed 
a variety of maneuvers, such as a zero-

gravity arc, where the aircraft pitched up then quickly down 
to create a virtual absence of gravity on board.  This maneuver 
was perfectly tracked epoch-by-epoch with the MC-LAMBDA 
method, as shown in Figure 6.

A second test flight was performed in the context of an air-
borne remote sensing campaign, the Gravimetry using Air-
borne Inertial Navigation (GAIN) project. The same configura-
tion of the receiver and three antennas was duplicated, except 
that the antenna was mounted directly on the nose, instead of 
a boom. 

The receiver logged data for the entire duration of the flight, 
from 10:06 to 14:18 UTC. The number of available satellites, 
PDOP values, and the flight ground track are shown in Figure 7. 
To support the gravimetry campaign, a high-precision inertial 
navigation system/inertial reference system (INS/IRS) was also 

FIGURE 4  Mean computational time marked by the different attitude estimation methods, per num-
ber of baselines (or number of antennas+1) employed. The gray bars span between the maximum 
and minimum numbers obtained for each algorithm.  104 course solutions generated via Monte 
Carlo simulations.
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FIGURE 6  First flight test. The zero-gravity maneuver is tracked epoch-by-
epoch with the MC-LAMBDA method. Only in five epochs was the correct 
ambiguity matrix not found.
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FIGURE 5  First flight test: number of common satellites tracked and 
PDOPvalues (top) and ground track (bottom)
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carried on board, allowing for a comparison of the INS attitude 
solutions with those generated by GNSS. 

The unaided, single-frequency, single-epoch success rates 
for the LAMBDA and MC-LAMBDA methods are reported 
in Table 2. The higher number of satellites available during the 
second flight test helped to improve the performance of the 
unconstrained methods. 

The LAMBDA method was capable of fixing the correct set 
of integer ambiguities 40.3 percent of the time — much higher 
than in the first flight test but still insufficient to be a reliable 
method on a single-epoch basis. Comparatively, the MC-
LAMBDA method again demonstrated a very large improve-
ment, providing the correct integer matrix for more than 95 
percent of the epochs. Hence, the precise attitude solution 
was available for the largest part of the flight duration. Figure 
8 shows the attitude angles as derived with the GPS observa-
tions for the time span considered. 

Figure 8 also shows the output of the INS. Standard devia-
tions of the differences between the output of the INS and the 
GPS-based attitude solution are 0.01 degrees for the heading 
angle, 0.20 degrees for the elevation angle, and 0.12 degrees for 
the bank angle. The heading angle is estimated with the highest 
precision, whereas the elevation shows the highest noise levels. 
The bank angle estimation is more accurate than the elevation 
one, being driven by the longer baseline formed by the antennas 
on the nose and on the wing.

Attitude-Bootstrapped Improved  
Relative Positioning
The MC-LAMBDA method, described in the previous section, 
can be used in other ways, for example, to improve relative 

positioning in the 
formation flying. 

Tradit iona l ly, 
in multi-platform 
missions, such as 
formation f ly ing 
and rendezvous, 
t he GNSS-based 

attitude determination and relative positioning problems are 
treated independently. Recent research has shown that multi-
antenna data can also be used to enhance the relative posi-
tioning between the platforms. This approach makes use of an 
approximation of the ILS by first solving the attitude deter-
mination problem for each individual platform with the MC-
LAMBDA method and then to use its solution to improve the 
baseline estimation so that the bootstrapped solution can find 
the baseline between platforms. This integrated approach is 
coined attitude-bootstrapped relative positioning. 

In this section we will discuss a case in which two platforms 
either side of a baseline have the same number of antennas (m 
+ 1). C is the total number of independent baselines at both 
platforms (e.g., C = 2m). The most common configuration for 
GNSS-based attitude determination is the use of three or four 
antennas on a single platform, but platforms carrying fewer 
antennas are also used. These scenarios are depicted in Figure 9.

We describe the integrated approach principle by provid-
ing an example that demonstrates the improved multi-antenna 
solution. 

First, consider a configuration with a single antenna at 
each platform (C = 0): the variance of the conditional base-
line estimate is given as . Then, with two antennas at 
each platform (C = 2 in Figure 9), the baseline at the first plat-
form is indicated with , the baseline at the second platform 
is indicated with  , and the baselines between the two anten-
nas at each of the two platforms are denoted with  and 
. Assuming that the baseline lengths between the antennas at 
each platform  and  are precisely known and the ambiguity 
vectors at these baselines can be determined successfully using 
the MC-LAMBDA method, the baseline coordinates for each 
platform can be determined precisely, in the millimeter range.

As a consequence, the baseline between the first two anten-
nas at both platforms can be estimated by either differencing 
between these antennas, or by estimating the baseline between 
the remaining two antennas at both platforms and then forming 
the baseline , where  is known precisely. 
Hence the same baseline is observed twice and thus the variance 
of the baseline estimate is improved by a factor of 0.5.

This discussion can be extended to a larger number of 
antennas at each of the platforms, and also to the non-symmet-
ric case with a different number of antennas at each platform.    

This discussion can be supported by analytical analyses. 
For the baseline between the platforms the improvement of 
both ambiguity resolution and baseline precision for the multi-
antenna solution can be demonstrated to be a function of the 
number of antennas at each platform.  The ambiguity and 
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FIGURE 7  Second flight test. Top: number of common satellites tracked and 
PDOP values. Bottom: Ground track
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LAMBDA 40.3

MC-LAMBDA 95.8

TABLE 2.  Second flight test. The unaided single-
epoch, single-frequency success rate (%) for the 
LAMBDA and the MC-LAMBDA methods.
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baseline vectors can be estimated with a 
precision improved by a factor,  

where QBoots is the v-c matrix of the 
bootstrapped solution. This reduction 
is important as it will result in higher 
success rates for ambiguity resolution 
and more precise baseline estimates. The 
performance of attitude-bootstrapped 

relative positioning has been dem-
onstrated using simulations and data 
obtained from experiments, found in 
the Additional Resources section.  

Conclusion
We have introduced a new method 
of GNSS-based attitude determina-
tion. Instead of following the classical 
approach of first estimating the base-

lines from carrier phase observations 
and then estimating the attitude matrix, 
the new MC-LAMBDA method has the 
orthonormal constraints of the attitude 
matrix incorporated into the ambiguity 
objective function from the start. 

As a result the a priori geometric 
information is properly weighted in 
the ambiguity objective function and 
provides guidance for the search of the 
integer minimizer. The increased com-
plexity is tackled by means of easy-to-
use bounding functions, which allow for 
an efficient and fast numerical solution. 
By tightening the relation between the 
attitude and the ambiguity estimation 
problems, the new method is capable of 
maximizing the probability of success-
ful integer ambiguity resolution, while 
making epoch-by-epoch precise attitude 
solutions available in a timely manner. 

The novel ambiguity-attitude esti-
mation method can also be employed to 
enhance a relative positioning solution 
between a number of platforms with 
multiple antennas. When flying multiple 
platforms in formation, each carrying a 
number of antennas, reliable ambiguity 
estimation for the baselines at each plat-
form implies higher redundancy in the 
inter-platform baseline measurements. 
This allows for higher probabilities of 
correctly fixing the ambiguities between 
the different platforms and more precise 
baseline estimates.

Acknowledgements
Peter Teunissen is Federation Fellow of 
the Australian Research Council (proj-
ect FF0883188). This support is grate-
fully acknowledged. The research of 
Sandra Verhagen is supported by the 
Dutch Technology Foundation STW, 
applied science division of NWO, and 
the Technology Program of the Min-
istry of Economic Affairs. The GAIN 
experiment team, a mutual cooperation 
between chairs of Control and Simula-
tion, Physical and Space Geodesy and 
Mathematical Geodesy and Position-
ing at TU Delft is acknowledged for the 
pleasant cooperation during the flight 
tests. This work is supported by the Aus-
tralian Space Research Program GARA-
DA project on SAR Formation Flying.

0 2000 4000 6000 8000 10000 12000 14000 16000−200

−150

−100

−50

0

50

100

150

200

Epoch

He
ad

in
g 

Ψ
 [

de
g]

 

 

IRS
GPS

0 2000 4000 6000 8000 10000 12000 14000 16000−20

−15

−10

−5

0

5

10

15

20

Epoch

El
ev

at
io

n 
θ 

[d
eg

]

 

 

IRS
GPS

0 2000 4000 6000 8000 10000 12000 14000 16000
−20

−15

−10

−5

0

5

10

15

20

Epoch

Ba
nk

 φ
 [

de
g]

 

 

IRS
GPS

(a)

(b)

(c)

FIGURE 8  Second flight test: The three attitude angles estimated with GNSS signals with precise INS 
output is plotted as well.
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Manufacturers
The receiver installed on the aircraft was 
a PolaRx2@ from Septentrio nv, Leuven, 
Belgium. The AIL DM-C L1-L2 antenna 
placed on the middle of the fuselage 
was from ITT Corporation, Bohemia, 
New York, USA. The two L1 antennas 
placed on the wing and the nose were 
from Sensor Systems, Inc., Chatsworth, 
California, USA. The data presented in 
this article was plotted using MATLAB 
from The Mathworks, Inc. Natick, Mas-
sachusetts, USA.
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