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It is well known that carrier phase 
ambiguities are integer val-
ues. Intuitively, this is hard to 

understand with a common counter-
argument progressing along these 
lines: even if the receiver measures the 
instantaneous phase of the incoming 
signal (thus removing any fractional 
cycle component at the receiver end), 
the phase of the signal at the satellite 
cannot be guaranteed to be zero, so 
how can the ambiguity be integer?

In this article we explain why the 
carrier phase ambiguities are indeed 
integer.

To keep things simple, we begin by 
assuming the propagation errors (iono-
sphere, troposphere, etc.) and clock 
errors are zero. This is not limiting 
but greatly simplifies the analysis and 
interpretation because it only leaves 
geometric terms (i.e., range and range 
rate).

Geometric Interpretation  
of Carrier Phase
Before getting into too many details, it 
can be instructive to give a geometrical 
understanding of the carrier phase.

Recall that carrier phase observa-
tions are obtained by integrating the 
measured Doppler shift of the signal 
(details in the next section). This is why 
the term accumulated Doppler range 
(ADR) is often used to describe the 
same observation. In the absence of 
errors, the Doppler shift, fDoppler, of the 
received signal is 

where λ is the carrier phase wavelength 
and  is the geometric range rate 
between the receiver and satellite (the 

over-dot represents the time-derivative 
of the geometric range, ρ). 

Integrating the Doppler over time 
gives the carrier phase observation at 
time t, ϕ(t), as

where t0 is the start of the integration 
period (usually when the signal is first 
acquired),  is the change in 
range over the integration period, and 
ρ(t0) is the initial range and represents 
the integration constant. Equation (2) 
also shows that the carrier phase obser-
vation is a measure of the change in 
range over time.

Setting t = t0 in equation  gives

because the change in the range over 
zero time interval is zero. Of course, 
the initial range is generally unknown 
(after all, that is what the receiver is 
trying to measure) and thus can be 
loosely interpreted as being ambigu-
ous. This is the geometric analogy to 
the carrier phase ambiguity.

Carrier Phase Generation
Figure 1 shows a high-level diagram 
of a GNSS receiver-tracking loop. The 
purpose of the loop is to ultimately 
have the numerically controlled oscil-
lator (NCO) generate a signal with 
the same frequency and phase as the 
incoming signal (after down-conver-
sion). This image is included to help 
clarify the notation used below.

The Doppler shift of the received 
signal is given by
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where fdc is the frequency of the signal 
after down-conversion, and fIF is the 
nominal intermediate frequency (IF). 
The down-converted frequency is 
given by

where fRx is the received signal fre-
quency, and fLO is the frequency of the 
receiver’s local oscillator (after being 
mixed up or down from its fundamen-
tal frequency)

The IF is given by

where fSV is the nominal signal fre-
quency (e.g., 1,575.42 MHz for GPS L1). 

Using a frequency lock loop (FLL), 
the receiver’s NCO tries to generate 
a frequency, fNCO, that matches the 
down-converted frequency as closely as 
possible. The error (discriminator out-
put), δ fNCO, is passed to the loop filter 
that computes the feedback to NCO. 
The carrier phase equivalent of the 
equation (4) is 

where the term on the left is the carrier 
phase observation, ϕdc is the phase of 
the signal after down-conversion in the 
front-end, and ϕIF is the phase of the 
receiver’s IF signal. 

For convenience, we assume that 
fIF = 0 such that ϕIF is constant. From 

equation (6), this is equivalent to fSV = 
fLO (ignoring relativistic effects). In this 
case, and assuming the receiver’s oscil-
lator is phase synchronized with the 
satellite (recall our initial assumption 
of perfect clocks), it follows that ϕIF = 0. 

Let us now consider the signal 
phase after down-conversion, which is 
given by

where ϕRx is the phase of the signal at 
the receive antenna (i.e., before down-
conversion), and ϕLO is the receiver’s 
locally generated phase. Analogous to 
the FLL, a phase lock loop (PLL) tries 
to drive the NCO phase to the down-
converted phase. 

Accounting for tracking errors, 
δϕNCO, we can write

Since the receiver does not know 
ϕdc, it instead uses ϕNCO as its best esti-
mate. In other words, equation (7) can 
be approximated and then simplified 
(using equation [9] then [8] and ϕIF = 0) 
as follows: 

where ϕSV is the phase of the satellite 
(equivalent to the receiver’s phase for 

the assumptions made). We can break 
this down further by realizing that the 
received phase is equal to the phase 
of the satellite when the signal was 
transmitted. Knowing that the time of 
propagation of the signal is T = ρ/c, we 
can write

Substituting equation (11) into (10) 
gives

This shows us that the carrier phase 
observation under ideal conditions 
equals the true range plus tracking 
errors. The latter is zero mean with 
typical noise and multipath contrib-
uting approximately one millimeter 
and two to three centimeters of error, 
respectively.

But where’s the carrier phase ambi-
guity, you ask? To answer this, we need 
to recognize that the NCO is really 
only concerned with matching the 
phase of the local and received signals 
within one cycle. More specifically, 
the carrier phase discriminators in 
the tracking loops (not shown) can-
not distinguish between one cycle and 
another and thus converge to the near-
est cycle.

In other words, while the previ-
ously described development implicitly 
assumed ϕNCO = ϕdc, in reality 

where mod(a,b) is the modulus 
(remainder) of a / b. Practically, this 
means the NCO phase is ambiguous 
by an integer number of cycles and 
explains why the ambiguity is integer.

Also worth noting is that the car-
rier phase ambiguities are determined 
when the signal is first acquired. After 
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FIGURE 1  High-level diagram of a GNSS receiver tracking loop. The notation of the frequency (f) 
and phase (ϕ) matches that in the text.
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this time, the change in range/phase is 
captured by integrating the measured 
Doppler shift. In other words, with ref-
erence to equation (2), the integration 
constant is determined at t0.

Discussion
Carrier phase measurements can, in 
theory, be generated using an FLL only. 
In this case however, the phase track-
ing error, δϕNCO, will not, in general, 
be zero. This is because the FLL is only 
concerned with matching the frequen-
cy of the received and generated sig-
nals. If this is done perfectly, the phase 
tracking error would be a (generally 
non-zero) constant. In practice, track-
ing jitter in the frequency loop causes 
the phase tracking error to exhibit ran-
dom walk effects. 

Ultimately, the ambiguity term will 
absorb any mean error in phase track-
ing error. With a PLL, these errors are 
zero-mean and thus are not problem-
atic. For an FLL, the non-zero tracking 
error would be absorbed.

We should also note that the IF 
phase of the receiver plays a role in the 
“integer-ness” of the ambiguities. Ear-

lier, we assumed the receiver phase was 
synchronized with the satellite’s phase; 
however, this is not true in general, 
and any offset will be absorbed by the 
ambiguity term. This error is effectively 
random at turn-on (due to the random 
nature of the oscillator’s phase) and 
thus cannot be easily compensated. 
This is part of the challenge of ambigu-
ity resolution with precise point posi-
tioning (PPP) algorithms. Fortunately, 
for double difference processing, this 
effect cancels.

Similar to the IF phase, any unac-
counted for delays in the receiver 
hardware (e.g., inter-channel delays, 
etc.) will affect the integer-ness of the 
ambiguities. Fortunately, many of these 
effects can be calibrated with proper 
techniques.

Finally, although the previously 
described development ignored error 
sources, including these in the develop-
ment is relatively straightforward and 
the same conclusion results. The only 
difference is that equation (12) would 
include all of the normal error terms 
and, of course, the ambiguity! 
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