

Global Positioning Systems Wing

Request for Feedback on GPS IIR-20 (SVN-49) Mitigation Options

5 March 2010

Col David Goldstein Chief Engineer, GPS Wing

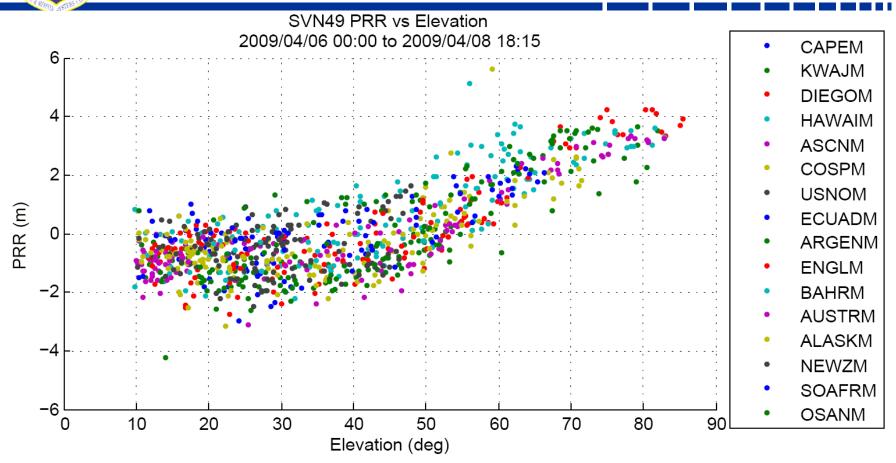
GPSW SVN-49 Information_5 Mar 2010

- Discuss SVN-49 signal problem with GPS community
- Provide information on potential mitigations
- Solicit user responses to mitigations (use template at end)

SVN-49 (PRN-01)

Background

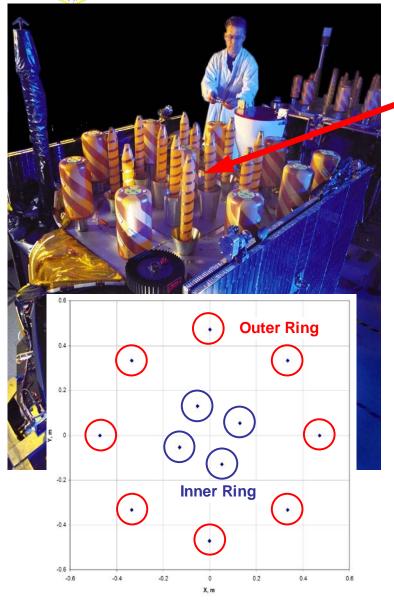
- SVN-49 unlike other GPS IIR Satellites had L5 R&D Demonstration Payload
 - Demo payload made use of Auxiliary Payload port
- No impact on L1 and L2 signals was intended or expected
- "Out of family" elevation angle dependent Pseudo Range Residuals (PRR) seen at monitor stations and by other GPS users world-wide
- Root cause studied and established
 - Signals reflecting off L5 filter and transmitted through satellite antenna
 - Installation method is unique to this satellite other GPS satellites will not be affected
 - SVN-49 signal is not compliant with IS-GPS-200 for the spurious transmission specification, but does meet all other specifications and requirements
- Result is permanent, static multipath signal within satellite
- Signal distortion is user elevation angle dependent
 - Little or no distortion at low elevation angle
- Signal distortion impacts receivers differently depending on unique designs
- Non IS-GPS-200 compliant receivers greatly complicate the issue
- Varying impacts prevent a single solution for all forms of user equipment

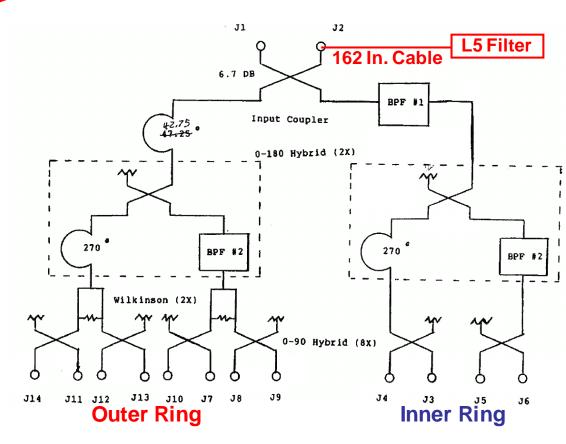


SVN-49 (PRN-01) Continued

Current Status

- SVN-49 set unhealthy but still operated as part of GPS constellation
- Control segment parameters temporarily adjusted to allow 2SOPS to continue to include SVN-49 in operational constellation (152 meter antenna phase center offset)
- Considering modification of Kalman Filter to accommodate SVN-49 without impacting users
 - This is a software update to improve the control segment only
- GPSW and 50 SW exploring additional mitigation steps and eliciting user feedback
- Potential mitigation steps include
 - 1. Set healthy with current 152m Antenna Phase Center (APC) and associated clock offsets
 - 2. Set healthy with factory APC and clock offset
 - 3. Users switch to multipath-resistant receivers
 - 4. Modify receiver software to use look-up table corrections
 - 5. Increase SVN-49 User Range Accuracy (URA) change bits in GPS data message that allow user equipment to de-weight or exclude SVN-49 signals
 - 6. Remove data modulation from L2 P(Y)-code to mitigate impact to high precision users
 - 7. Change L2C PRN code to a "unique sequence"
 - 8. Change SVN-49 from PRN-01 to PRN-32
 - 9. Use spare health code so future users could use SVN 49 despite unhealthy setting


SVN-49 Pseudorange Residuals (Monitor Station PR – Predicted PR)


- Dual frequency ionosphere refraction corrected pseudoranges
- Relative to "best fit" orbit during initial test period (6 April 2009)
- Roughly 4+ meter spread from 10 to 80 degrees
- Smaller elevation-dependent trends seen on other IIR/IIR-M SVs

GPS IIR L-Band Antenna with L5 Demo Filter

L-Band antenna array with 12 helical elements

- Necessary mitigations
 - Fine tune T_{GD} /ISC values for non-L1/L2 P(Y)-code receivers
- Optional mitigations (any and all combinations are possible)
 - 1. Set healthy with current 152m Antenna Phase Center (APC) and associated clock offsets
 - 2. Set healthy with factory Antenna Phase Center (APC) offset
 - 3. Users switch to multipath-resistant receivers
 - 4. Modify receiver software to use look-up table corrections
 - 5. Increase URA index to a minimum value of '3'
 - 6. Remove data modulation from L2 P(Y)-code
 - 7. Change L2C PRN code to a "unique sequence"
 - 8. Change SVN-49 from PRN-01 to PRN-32
 - 9. Use spare health code so future users could use SVN 49 despite unhealthy setting

1) Implement 152m Antenna Phase Center (APC) and Associated Clock Offsets

Employ 152 m orbit height and clock offsets to reasonably match the anomaly effect on many types of L1/L2 receivers

- Currently in use with the satellite set unhealthy
- Reduces the maximum error seen by Control Segment reference station receivers from > 4 m to < 1 m

• Prevents reference station measurements from disrupting normal Control Segment operations

- Reduces error for many dual frequency code receivers in use today, just as it does for the reference receivers
 - May slightly increase error for single frequency receivers and for dual frequency carrier receivers
 - Increases error for modern receivers with advanced multipath mitigation capability
 - L1C/A users can use the satellite but may see increased errors in their solutions

Simply set SVN 49 with standard Antenna Phase Center offset. Do not implement any mitigation techniques.

- Easily accomplished by the control segment
- Multipath from SVN 49 signal degrades control segment ability to provide quality navigational uploads

• Error increased for all users

- Impact varies with program and application
- Dual frequency receiver navigation solutions experience greater error than single frequency users
- Some users will seek mitigations to avoid including SVN 49 in their solutions

3) Switch to Multipath-Resistant Receivers

Some high-end receivers with advanced multipath mitigation technology are not affected by SVN-49's spurious signals

- This mitigation will be difficult for some users
 - However, it may be the best way to overcome the anomaly
- Some users already have these high-end receivers
 - Users who really need to obtain the best accuracy
 - Multipath is a fact of life for GPS receivers
 - Many users already mitigate multipath
- Multipath errors on par with single-frequency iono model errors

4) Modify Receiver Software to Add Look-Up Table

UE software updates to add look-up table to compensate for the elevation angle dependent error for specific receivers

- This mitigation may be difficult for some receivers
 - However, it is one of the best ways to overcome the anomaly
 - The Air Force Control Segment is actively considering this option for their use
- Look-up table corrections tailored for specific receiver characteristics
 - Frequency/code or frequencies/codes tracked
 - Front-end bandwidth
 - Correlator spacing (if E-L correlator)
 - Correlator type (especially if not E-L correlator)
- Users could examine SV block type and PRN assignment to uniquely identify SVN 49 for their own mitigation technique

Increase the User Range Accuracy (URA) index to a value of '3' or higher to alert receivers to de-weight SVN-49 measurements

- URA is used by many receivers to weight the inputs from each satellite in the navigation solution
 - Thus permitting de-weighting of SVN-49 in an appropriate fashion
 - An index of 3 means 4.85 < URA ≤ 6.85 meters
 - Higher values of URA indicate higher levels of error
- Unfortunately URA is ignored in many systems
 - Considered unnecessary when differential corrections are available
 - Some systems simply ignore IS-GPS-200 parameters
 - Thus not a "universal" mitigation

Remove data modulation from L2 P(Y) to prevent most semi-codeless receivers from using SVN-49

- Data removal on L2 P(Y)-code, ONLY on SVN49
- Several industry observers have expressed serious concern about receiver-specific code errors that prevent carrier phase ambiguities from being resolved or, worse, being resolved incorrectly
 - This problem is expected only under poor geometric conditions
 - Problem is caused by different PR errors from different receivers
 - Dual-frequency PR error differences of a meter have been seen
- Mitigation would prevent L2 measurements on SVN-49 by most types of semi-codeless receivers
 - Thus preventing worst case situations from occurring
 - Some types of semi-codeless receivers are not affected L2 data removal

Change the L2C PRN code to unique sequence so only receivers with updated software which corrects the pseudorange errors can use SVN-49

- Similar mitigation & rationale as for removing L2 P(Y)-code data
 - To overcome different PR errors from different receivers in DGPS operation:
 - Use high-end multipath mitigation in both base station and rover
 - Update base station and rover software to correct for SVN-49 anomaly
 - Avoid use of SVN-49 altogether

• With changed L2C PRN code and updated DGPS receivers/software:

• SVN-49 as useful as any other satellite for precision DGPS operation

8) Change SVN-49 From PRN-01 to PRN-32

WAGE corrections are useless for SVN-49 as PRN-01, WAGE does not provide corrections for PRN-32; SVN-23 currently broadcasts as PRN-32, WAGE corrections would be beneficial for another SV to broadcast as PRN-01

• WAGE is a built-in wide-area DGPS capability for PPS receivers

- WAGE is not currently available for SPS users
 - However, WAGE-2 capability is coming with L2C, L5, and L1C
 - WAGE-2 will include corrections for PRN 32

• Switch SVN-49 to PRN-32 and SVN-23 to PRN-01

- Improve accuracy of SVN-23 for PPS users
- Avoid inference that SVN-49 accuracy is improved by WAGE

• This mitigation will benefit current PPS users only

9) Use Spare Nav Code so Future Users Could use SVN 49 Despite Unhealthy Setting

Leave SVN 49 unhealthy, but use a spare health message to allow future user equipment (UE) to use SVN 49

- Should not harm existing UE
 - Does not harm users who do not want to include SVN 49 in solution
 - Spare code identified in IS-GPS-200, Table 20-VIII
- Requires UE update to include "Unhealthy but Usable" satellite in solution
 - Current UE cannot use SVN 49 without a software modification
 - Unknown user cost and schedule to modify software

- Signal distortion is internal multipath and is permanent
- Impact on users is variable and application-specific
 - Single or dual frequency, correlator spacing, type of correlator, local differential or not, phase-based or code-based application
 - Therefore, mitigations for distortion are very application-specific
- No universal solution identified
- SVN-49 not needed for coverage at this time
- Minimal signal distortion below 60° elevation angle
 - RMS URE over all elevation angles comparable to a GPS IIA SV

Key Considerations for SVN-49 Way Forward

- Updating software in fielded UE very challenging
 - Some UE may be impossible to update
- No consensus in feedback from manufacturers
 - Non IS-GPS-200 compliant receivers greatly complicate the issue
- Users are designing to (and expecting) recent actual GPS system performance, not specified performance
- Constellation is very robust today, so Air Force can afford a longer term focus and solution

Way Forward for SVN-49

• Note to the Users

- The mitigations described in this brief are the best potential courses of action we have at this time
- Results from user feedback may lead to adjustments of these mitigations

• Way Ahead

- Use the National Space-Based PNT Systems Engineering Forum (NPEF) and other meetings to gather feedback on mitigation options to ensure right approach for users and operator
- Continue transparent engagement with media and user communities worldwide
- Plan to further investigate mitigation options to support decision when to set SVN-49 healthy unless an exceptional operational need arises

Tentative Schedule for SVN-49 (Exact Dates and Times TBD)

Date	Event (Telecon call-in number is: 1-800-366-7242 passcode: 6530000#)
Mar 10	DoT public release of SVN 49 mitigations
26 Mar 10	Q&A Telecon hosted by GPSW (4pm Eastern Time)
30 Apr 10	Q&A Telecon hosted by GPSW (4pm Eastern Time)
28 May 10	Collect final responses from Civil & Commercial community
TBD	Review of Responses with Civil Representatives at GPSW
TBD	Official Meeting with Civil Gov for Review of SVN 49 mitigations
TBD	Final Civil & Commercial Feedback posted
TBD	Brief NPEF (date still TBD, possibly scheduled with EXCOM)
TBD	Brief GPSW & 50 th SW leadership – Responses & Recommendations
TBD	Brief SMC & 14 th AF leadership – Responses & Recommendations
TBD	Brief AFSPC leadership – Responses & Recommendations
TBD	Brief EXCOM (date still TBD)
Sep '10	AEP 5.5.4 Installed at 2SOPS (date still TBD)
Sep – May'11	Mitigation Studies performed
Jun '11	SVN 49 Set Healthy Decision

SVN49 Mitigation Response Template

Use this template when responding to these proposed mitigations
Responding POC & contact info:

Mitigation	Feedback (pros/cons/impacts)	L1C/A impacts	L1C/A semi- codeless impacts	# units / users affected	Time to accommodate mitigation	Cost to accommodate mitigation	Platforms affected
1. Set Healthy with 152m APC & clock offsets							
2. Set Healthy with factory APC							
3. Use Multipath Receivers							
4. User equipment software updates							
5. Increase URA to 3 or greater							
6. Remove L2P(Y) data modulation							
7. Change L2C PRN							
8. Change SVN49 PRN from 01 to 32							
9. Unhealthy but Usable w/ spare nav code							