

UNMANNED SYSTEMS WEEK

WELCOME TO

GNSS/INERTIAL+ INTEGRATION FOR UNMANNED SYSTEMS

11 am-12:30 PDT Noon-1:30 pm Mountain 1 pm-2:30 pm Central 2 pm-3:30 pm Eastern

Audio is available via landline or VoIP—For VoIP: You will be connected to audio using your computer's speakers or headset. **For Landline:** Please select Use Audio Mode Use Telephone after joining the Webinar. **US/Canada attendees** +1 (480) 297-0022, Access 805-720-632

WELCOME TO GNSS/Inertial+ Integration for Unmanned Systems

Maarten Uijt de Haag **Cheng Professor Ohio University**

Andrey Soloviev Principal QuNav

Sandy Kennedy Director of Core Cards NovAtel Inc

Co-Moderator: Lori Dearman, Sr. Webinar Producer

Who's In the Audience?

A diverse audience registered from 42 countries, 28 states and provinces representing the following industries:

- **21%** GNSS Equipment Manufacturer
- 17% Professional User
- **17%** System Integrator
- **17%** Product/Application Designer
- 28% Other

Welcome from *Inside GNSS*

Richard Fischer Director of Business Development Inside GNSS

GNSS/Inertial+ Integration for Unmanned Systems

Mark Petovello Geomatics Engineering University of Calgary Contributing Editor Inside GNSS

Poll #1

What kind of environment are you most interested in operating your unmanned system in? (select top two)

- Open Sky
- Indoor
- Underwater
- Urban
- Under foliage

Overview of June 2

- Overview of unmanned systems
 - Applications
 - Appropriate metrics
- Positioning requirements
 - Key challenges/issues of GNSS in different environments
 - Role of multi-GNSS systems
 - Importance of having a reliable system
- GNSS accuracy requirements
 - Standalone & differential processing
 - Attitude systems
- Application to aerial and marine systems

What to expect today...

- Role of integrated systems in unmanned applications
- GNSS + inertial + other sensors/systems
 - Role & benefit of various sensors
- Integration approaches
 - Limitations of GNSS/INS and how to include other sensors
- Product development
 - How do you actually go about selecting components and building a system

GNSS/Inertial+Integration

Maarten Uijt de Haag Cheng Professor, *Ohio University*

GNSS/Inertial+

- GNSS in unmanned vehicles summary
- Presence of additional sensor for other unmanned vehicle platform functions
- Operational requirements with respect to the required navigation performance based on GNSS
- Why GNSS inertial integration?
- GNSS/Inertial+

GNSS in Unmanned Vehicles

- Many commercial platforms rely on GNSS for various purposes:
 - Navigation
 - Surveillance
 - Conflict detection and resolution
 - Geo-referencing
 - Time-keeping/synchronization
 - Etc.

Courtesy of Amazon

Courtesy of Oshkosh Defense

Geo-referenced LIDAR map of OU football stadium

Courtesy of OrbitGIS

GNSS in Unmanned Vehicles

LOA	Computer	Human
1	Offers no assistance	Does all
2	Suggests alternative	Chooses
3	Selects way to do task	Schedules function
4	Selects and executes	Consents
5	Executes unless vetoed	Has possibility to veto
6	Executes immediately	Is informed upon execution
7	Executes immediately	If informed if asked
8	Executes immediately	Is ignored by computer

Levels of Automation, LOA (Sheridan, 2002)

 Low-cost GNSS has enabled the execution of automatic UAV/UGV flight plans for even the non-professional user.

Courtesy of 3DR robotics

Typical Additional Sensors

- Most unmanned vehicles already include an inertial sensor (e.g. an inertial measurement unit or IMU) to support the vehicle controller;
- Additional sensors are used for environment mapping, surveillance, conflict detection and avoidance.

Google car

3D maps, obstacles and traffic:

Velodyne laser scanner

Fast traffic:

• Four radars (front and rear bumper)

Traffic lights:

Camera (near the rear-view mirror),

Navigation/motion:

 GPS, Inertial measurement unit (IMU), Wheel encoder

Operational Environments

Environment	Ground vehicles	Aerial vehicles	GNSS
National airspace		X	Available
Rural, open-sky	X	X	Available
Rural, foliage	X	X	Challenged
Suburban	X	X	Available
Urban	X	X	Challenged
Indoor*	X	X	Not available/very low signal strength

Important note: where GNSS is normally available, service could possibly be denied by interference (intentionally or unintentionally) or, worse, spoofed.

*includes structured environments such as buildings and unstructured environments such as mines and caves

Operational Environments

Environment	Ground vehicles	Aerial vehicles	GNSS
National airspace		X	Available

From FAA:

- Model aircraft below 400ft, away from populated areas and full scale aircraft, not for business purposes.
- Scan Eagle and Aerovironment's Puma have been certified for commercial use (only authorized to fly in the Arctic)
- Public entities (federal, state and local governments and public universities) may apply for a Certificate of Waiver or Authorization (COA)

But also:

An NTSB judge dismissed the \$10,000 fine the FAA levied against UAV operator ...

Lower Altitude and Ground Operation

Many operations are envisioned that require (semi-)autonomous operation at low altitudes over or even in populated areas (urban/suburban)

Environment	Aerial vehicles	GNSS
Rural, open-sky	X	Available, vulnerable
Rural, foliage	X	Challenged
Suburban	X	Available, vulnerable
Urban	X	Challenged
Indoor	X	Not available/low signal strength/multipath

Why GPS/Inertial Integration?

Objective of a navigation system is to provide an accurate Position, Velocity, Attitude, and Time (PVAT) expressed in the coordinates of some geometric reference: Position, Velocity, Attitude, Time

Required Navigation Performance:

Accuracy, Integrity, Availability, Continuity, etc.

Integrated Navigation

Combine (integrate or fuse) data from multiple sensors (or navigation aids) in such a way that the Required Navigation Performance of the intended operation can be met.

But also robust surveillance, collision avoidance, path planning, control, communication, etc.

Unmanned Ground Vehicle: Urban Operation

Further Limitations

Outdoor with and without foliage

Transition to indoor

"Structured" indoor with multiple path options

Transition to indoor

Exploit Additional Sensors

General classification	Sensor/Sensor System
Tactile sensors (detection of physical contact or closeness)	Contact switches, bumpers, optical barriers, non-contact proximity sensors
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders, potentiometers, synchros, resolvers optical encoders, magnetic encoders, inductive encoders, capacitive encoders
Orientation sensors (orientation of the robot in a fixed reference frame)	Compass/magnetometers, gyroscopes, inclinometers
Acceleration sensors	Accelerometers
Beacons (localization in a fixed reference frame)	GNSS , active optical or RF beacons, active ultrasonic beacons, reflective beacons
Active Ranging (reflectivity, time-of-flight, geometric triangulation)	Reflectivity sensors, ultrasonic sensors, laser rangefinders (1D, 2D and 3D), optical triangulation (1D), structured light (2D)
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar, Doppler sound
Visual sensors (visual ranging, object recognition, feature extraction, segmentation, etc.)	CCD/CMOS cameras, Visual ranging packages, Object tracking packages

Basic Integration Architecture

- Integrated navigation to satisfy the RNP requirements
- In addition:
 - Secondary sensors can be used for their original primary function such as 3D mapping, collision avoidance, precision agriculture, etc.
 - And exploit the robust (and in case GNSS is present absolute and accurate) position, velocity and timing solution.

GNSS/Inertial+ Example 1

OU 3DR Hexacopter

Vision-based navigation

Payload:

- NovAtel OEMSTAR
- NovAtel L1 antenna
- Hokuyo laser scanner (3)
- Firefly MV camera
- Xsens IMU
- Atom onboard processing unit running Ubuntu and ROS
- APM 2.5 Ardupilot

6DOF SLAM

GNSS/Inertial+ Example 2

CTAE/ASCAMM ICARUS Quadcopter

3D Structure-from-motion results

Collaboration between Ohio University and CTAE/ASCAMM Barcelona, Spain

3D Structure-from-motion results

GNSS/Inertial+Integration

Andrey Soloviev Principal, *QuNav*

GNSS/INS Integration

- Main integration approaches:
 - Loose integration: solution-level data fusion;
 - Tight integration: measurement-level data fusion;
 - Deep integration: data fusion at the level of signal processing
- Main benefits
 - PNT availability (bridging over GNSS outages);
 - Redundant information to reject "bad" measurements (including potential protection against spoofing);
 - Improved robustness of signal processing (weak signals, jamming)

Benefits of GNSS/Inertial Integration

Example: navigation under dense canopy

GPS-only solution

Very sparse position fixes are obtained

Deep GPS/Inertial Integration

Reliable trajectory reconstruction is maintained

Limitations of GNSS/Inertial

- GNSS/INS integration improves the solution availability, however, performance can be still limited (especially, when integrating with lower-cost IMUs);
- Example: navigation in dense urban areas

Solution discontinuities

Beyond GNSS/Inertial: GNSS/INS+

- Generic integration approach
 - INS is a core sensor;
 - Other sensors provide aiding data for the inertial drift mitigation

- Motivation: Image-based approaches efficiently complement the GNSS navigation
- GNSS-denied scenarios: Natural or man made obstacles attenuate satellite signals
- o Image-based approach: Obstacles are used to navigate

Example of Improved Availability

red segment of vehicle path

Laser measurements provide
cross-track position observability

GPS measurements provide
along-track position observability

Scan image and SV locations projected onto the scanning plane

red segment of vehicle path

Image-Based Navigation Approaches

Feature-based approach:

 Use one or more images to observe features and apply feature parameters for navigation.

Correlation-based (or map-based) approach:

 Use one or more images to form a map of the environment; then correlate/compare this map to either an a priori map or a previously derived map to estimate the user position, velocity and attitude.

Integration with inertial sensors:

 Integrate the feature- or correlation-based approaches with the INS to obtain a solution that has a higher level of accuracy, availability, integrity and continuity.

Feature-Based Navigation

A simplified conceptual explanation

- Line-based navigation using laser scanner
- Measurement of displacement

Displacement is estimated based on changes in line ranges

Benefits of GNSS/INS+

Example results: GPS/Inertial/Lidar data fusion in urban canyons

Continuous trajectory reconstruction

Current state-of-the-art multi-sensor mechanizations: sensor specific

From sensor-specific implementations to generic plug-and-play navigation

- System can be reconfigured for a specific sensor set (prior to the mission) and/or on-the-fly as sensors are connected/disconnected;
- No additional design efforts are required to incorporate new sensors!

Reconfigurable Integration Filter Engine (RIFE)*

- It is difficult, if not *impossible*, to create an *exhaustive list of all aiding sensors*;
- Yet, it is *possible* to categorize *aiding measurements* into *generalized types*;
- Hence, <u>RIFE design is abstracted for generic sensors</u> that are grouped into classes according to the type of their measurements

*Developed under DARPA All Source Positioning and Navigation (ASPN) program

Example Generic Measurement

Relative position observables: change in position vector projected onto some axis (or axes) of the navigation or body-frame

Examples

Odometer

Position change projected onto forward axis

Position change from 2D lidar

Position change projected onto x and y axes of the body-frame

Planar surfaces extracted from consecutive 3D lidar images

Position change projected onto the plane normal vector

Plug & Play Sensor Fusion: Example Test Results

Urban navigation

Sensors

IMU: HG764G

GPS Pos Vel: Novatel-5

Camera: Prosilica-1

Camera: Prosilica-5

Stereo: Prosilica-6-7

Stereo: Prosilica-3-4

Laser 2d: Sick360

Odometer-2

Mag compass: HMR2300-2

000

Reference

RIFE solution

Plug & Play Sensor Fusion: **Example Test Results**

Indoor navigation

Sensors

IMU: HG1700

GPS Pr Dr: SPAN

Camera: CasioCam

Camera: MS Kinect

Barometer

Magcompass

RFID

Reference

RIFE solution

Ask the Experts – Part 1

Maarten Uijt de Haag **Cheng Professor Ohio University**

Andrey Soloviev Principal QuNav

Sandy Kennedy **Director of Core Cards NovAtel Inc**

Poll #2

What other sensors are you most interested in other than using GNSS+ Inertial? (select your top two):

- Odometer
- Vision
- Lasers or Radar
- Maps
- Magnetometer and Pressure Sensor

GNSS/INS+ Product Development

Sandy Kennedy
Director, Core Cards
NovAtel Inc.

GNSS/INS: Great Idea, Now Let's Build It!

- The benefits of a GNSS/INS+ system are clear, but how do we build it into a product that the marketplace needs?
- The system must be useful and effective
 - Needs to work within specification
 - Every time without onerous setup requirements
 - Not assured of ideal operating conditions
- Must be manufacturable and testable.
 - Low unit to unit variability
 - Repeatable build process

Product Development: Design Phase

Data Acquisition Considerations

- Data Acquisition details are often glossed over when discussing algorithmic approaches
 - Reliable system operation hinges on this!

- What is the interface to each sensor?
- Associated latencies?
- Need correct time of validity on each data stream

Time Synchronization

- Synchronous data
 - GNSS data and solutions (ie raw carrier phases and attitude solution)
 - Some IMUs can be synced to GPS time
- Asynchronous data
 - Some IMU data is asynchronous to GPS time
 - External events (ie camera exposure)

Example: IMU Data

Sensor Set

- IMU yes!
- GNSS receiver and antenna yes!
- Other sensors
 - Wheel sensor (odometer)?
 - Dual GNSS antenna and receiver (for attitude)?
 - Magnetometer?
- Perhaps better to think of what input measurements would be useful
 - External position
 - External attitude
 - External position displacement or range

Inertial Sensor Selection

- Bias Stability
- Non-orthogonalities/misalignments in the gyro and accel triads
- Scale factor errors
- Noise
- Size
- Cost
- Export classification
- MTBF

Additional Sensor Selection: 2nd Antenna

- 2nd GNSS antenna (and reciever)
 - Useful for alignment
 - Must measure or estimate angular offset between GNSS baseline and IMU axes
 - Attitude updates
 - Do you expect to be stationary (or constant velocity) for long periods?
 - But can the application bear the size of 2 antennas with sufficient separation?

Additional Sensor Selection: Odometer

- Wheel sensor/odometer/velocity sensor
 - Do you have wheels? Can you mount an external wheel sensor? Does an onboard odometer sensor have sufficient resolution/accuracy? Do you expect extended total GNSS outages?
 - HW input (pulses/ticks) or data record input?
 - Velocity update instantaneous velocity measure or average over last epoch?

Additional Sensors: Magnetometer or Barometer

- Magnetometer
 - Quality control of data are you near a lot of electricity and metal?
 - Accuracy of useful heading update
- Altimeter/barometer
 - Can you expose the sensor to the ambient air? Does your vehicle change height rapidly? (ie what is response time of sensor to changes)

Or Generic Update Support?

- Instead of interfacing to various sensors, you can accept a generic input that the overall system user has derived
 - External position (of the IMU or known point)
 - External attitude (of the IMU or known frame)
- Provided this external input data can be time stamped correctly and provided to the GNSS/INS fast enough
- Provided this external input data has a correct quality indicator with it
 - A standard deviation that truly reflects the error
 - Doesn't add any more unknowns to be modeled
- If these criteria are not met, you can get sub-optimal performance
 - Which means customer support calls

Take Aways

- Select the appropriate sensor set
 - Know the requirements of your target application
 - Understand how individual sensor errors impact the overall system error budget
- Make a reliable data acquisition sub system
 - HW and FW
- Implement reliable/robust data processing algorithms
- Test, test, test!

Visit <u>www.insidegnss.com/webinars</u> for a PDF of the presentations

Register for Unmanned Systems Week Sessions 3 at www.insidegnss.com/webinars

• Fri, June 6th: Unmanned Solutions & Applications Day

Contact Info:

- •Sensonor <u>www.sensonor.com/</u>
- •Sandy Kennedy <u>sandy.kennedy@novatel.com</u>
- •Andrey Soloviev <u>soloviev@qunav.com</u>
- •Maarten Uijt de Haag <u>uijtdeha@ohio.edu</u>

Poll #3

Which best describes your GNSS+ Inertial application?

- Low dynamic and High accuracy
- Low dynamic and low accuracy
- Highly dynamic and high accuracy
- Highly dynamic and low accuracy

Ask the Experts – Part 2

Maarten Uijt de Haag **Cheng Professor Ohio University**

Andrey Soloviev Principal QuNav

Sandy Kennedy **Director of Core Cards NovAtel Inc**

www.insidegnss.com www.sensonor.com