WELCOME TO
The Future of Farming: Unmanned Systems in Agriculture - Innovations in Land and Air

Co-Moderator: Lori Dearman, Sr. Webinar Producer

James Poss, Maj Gen (ret), USAF
CEO, ISR Ideas

Demoz Gebre-Egziabher
Aerospace Engineer and
Mechanics Faculty
University of Minnesota

Mel Torrie
Founder and CEO
Autonomous Solutions, Inc.

Benjamin Schilling
Director
NovAtel Inc
Who’s In the Audience?
A diverse audience of over 350 professionals registered from 47 countries representing the following industries:

20% Professional User
16% GNSS equipment manufacturer
16% Government
15% Product/Application Designer
13% System Integrator
20% Other
Richard Fischer
Publisher
Inside GNSS and Inside Unmanned Systems
James Poss, Maj Gen (ret), USAF
CEO
ISR Ideas
Poll #1

Why would you invest in agricultural UAS?
(Please select one)

• The market is about to explode; technology is ready!
• Right thing to do; precision ag is good for the environment
• The tech and policies might not be there yet, but I want in
• Are you kidding me? There’s no market there
Are Garden-Variety Drones for Real?

James Poss, Maj Gen (ret), USAF
CEO
ISR Ideas
Why Garden Drones?

TO SAVE MONEY

- In an industry with razor thin cost margins in the most climatically and geographically divergent industry in the world
The Theory behind agricultural UAS:

- UAS can increase yields, cut costs by providing improved crop prescriptions based on frequent, highly accurate imagery
- UAS can replace pilots for agricultural applications missions, cutting risk and saving materials
UAS: Improved yields

- Improving yields with imagery:
 - Electro optical: spots crop damage, equipment faults, etc.
 - IR: crop hydration, growth, insect infestation prediction
 - Hyperspectral: disease, insect activity, crop type
 - LIDAR: precision elevation, drainage, plant stand count, tree population
UAS: Improved yields

- Imagery MUST be processed:
 - Need rapid turn around (less than 24 hrs) from imagery to crop prescription
 - Prescription: georeferenced production inputs (seed, fertilizer, chemicals, etc.) for application only as needed and where needed for the most economic production.
 - Timelines less stringent for mapping, precision just as important
UAS: Precision Ag challenges

- Requires sophisticated, well equipped customers
 - Precision ag requires precision applicators, seeders harvesters; must be variable rate capable.
- Tough to make timelines with current sUAS rules; not BLOS, no enterprise solutions for processing
 - 2 nm drone coverage not efficient
 - Data link coverage spotty in agricultural areas
UAS: Precision Ag challenges

- Size matters
 - Crop dusters are sized for efficient application; Air Tractor 502-B carries 500 gallons
 - That’s fifty sUAS in capacity alone
 - Small cameras = more pictures. More pictures = more passes (and more $)
- Manpower matters
 - Tough to make margins with one pilot per drone in VLOS
- Avg insecticide cost per acre:
 - $15-20
 - Whatever drones do, they have to be cheaper than this
UAS: Are there better markets?

- Cost margins are tough for agricultural production
- Crop Insurance market?
 - 2016 Farm bill starts switch from subsidies to crop insurance
 - Crop insurance requires verification throughout growing season to cut false claims
 - Every American farm will need multiple images per year
- Commodities market?
 - Cheap drone imagery + improved weather forecasting = Market cornered
 - No one makes money without BLOS, larger UAV, enterprise imagery storage/interpretation
Unmanned Ground Systems

- Similar disadvantages to UAS:
 - Requires sophisticated, well equipped customers
 - Highly reliant on accurate location & geospatial data
 - Cost margins are TOUGH

- Advantages over UAS
 - Ground robotics well established in US agriculture (Eli Whitney?)
 - Driving tractor the “easy part” compared to modern seeders/applicators
 - No FAA to deal with

Courtesy CNH Industrial
UAVs and Precision Agriculture: The PNT Challenge

Demoz Gebre-Egziabher
Aerospace Engineer and Mechanics Faculty
University of Minnesota
- Close the data-decision-action loop more efficiently
 - Allow more **economic** use of resources.
- PNT accuracy and integrity will be key metrics
Minnesota is the 3rd largest soy producer in US
Soybean aphid (Aphidis Glycines) causes up to 40% loss in yield.

Uniform pesticide application inefficient.
- Non-uniform Infestation
- Unnecessary runoff
- Kills off natural predators

Solution: **Targeted** pesticide application.
- Right time.
- Only where needed.

Image crops in a band which shows plant damage due to infestation.
Direct Geo-referencing

- **Geo-referencing** = Assigning position coordinates to objects in an image.
- **Direct Geo-referencing** = Geo-referencing only by using observers pose and a terrain database.
Impact of Sensor Error

- IMU + single freq. GNSS code phase is not accurate enough.
- Real Time Kinematic (RTK) can provide the requisite accuracy.
Direct vs. Post Process

Direct Geo-referencing
(IMU + Code Phase GNSS)

Bundle Adjustment
(Optimization in post-process)

Image Credits: C. Olson
Georeferencing Uncertainty Distribution for Different Navigation System Qualities

- Low Quality: 5.4 m
- Medium Quality: 3.6 m
- High Quality: 0.78 m

Image Credits: H. Mokhtarzadeh
Vehicle states estimated using traditional sensor integration schemes
- Kalman Filter & variants
- Crucial for safe control

Future integration schemes will use
- Non-traditional integration schemes (e.g., deep learning)
- Non-traditional sensors.

How do you prove integrity on with such sensor fusion schemes?

Proving safety is a key requirement for Beyond Line of Sight (BLOS) operations.

Conclusions

- UAS can potentially increase the efficiency of agriculture operations.
- Accurate and reliable PNT is a key enabler.
- Provable level of safety and robustness of PNT solution is a key challenge moving forward.
Ask the Experts – Part 1

James Poss, Maj Gen (ret), USAF
CEO, ISR Ideas

Demoz Gebre-Egziabher
Aerospace Engineer and Mechanics Faculty
University of Minnesota

Mel Torrie
Founder and CEO
Autonomous Solutions, Inc.

Benjamin Schilling
Director
NovAtel Inc
Poll #2

What’s stopping you from investing in agricultural UAS? *(Please select all that apply)*

- The FAA rules are too restrictive
- Technology just isn’t there yet
- There’s no market; cost margins are too tight
- Are you kidding me? I’m investing now
- Other
Autonomous Farm Vehicles

Mel Torrie
CEO
Autonomous Solutions Inc. (ASI)
Autonomous Solution Inc. (ASI)

- Founded 17 years ago
- Field robotic ground vehicle solutions leveraging common platform building blocks
Our Autonomous Farming 1995-2017

Courtesy CNH Industrial
1. Step change in Labor Costs
 - Minimum wage hikes

2. Availability of labor and the right skill levels
 - Children not staying on the farm
 - Immigration reform, pending wall, etc.

3. Maintenance savings
 - Mining example -> 3X tire life in an autonomous mine

4. Productivity – deterministically optimize how crop is covered, the size of the equipment, and the number of units given choice of priorities (time, compaction, fuel, cost, etc.)
Size – The New Math

Smaller machines, less service, and fewer total units, pending disruption attempts by small tractor OEMs

Less compaction, fuel, service, downtime impact, transport costs
1. Vehicle Automation
2. Communications Limitations
3. Perception
 - Cost, Weather, Dust, Foliage Penetration
4. Positioning blockage and consistency
5. Serviceability
6. Liability
- Larger tractors are making great inroads towards full drive by wire actuation
- Progress in centralized / distributed electronics via CAN bus standards
 - "ISBUS Class 3 is currently the highest interface level and allows the implement to take control of certain tractor functions (e.g. hydraulic remotes, PTO, 3-point hitch, steering, ground speed, etc.)."
Communications Advances

- Meshing multi-frequency radio solutions for better foliage penetration and range
- Telematics connectivity getting better
- 1Gbps coming:
 - 5G (2018)
 - Low Earth Orbit Satellites (2019)
Sensor Cost

- Automotive driving down costs and advancing technology maturity
 - Lidar -> Solid State
 - Lower cost and higher accuracy Radar
 - Parallel GPU Image processing

[Image of a news article from IEEE Spectrum about Quanergy's $250 Solid-State LIDAR for Cars, Robots, and More]
- Telematics connectivity is continuing to get more functional and better coverage
- Future: Robots will resupply and service equipment
 - ...While it is moving
People disable safety systems and win lawsuits in every industry

- Design tamper proof systems
- Get good insurance
- Support best practice standards establishment
- An accident sets us all back
- Find the relevant safety standards and get educated and if possible contribute
 - ISO 25119 Agriculture Machine Safety
 - ISO 18497 Highly Automated Agriculture Machines (HAAM)
- OEM’s usually wait to be pushed by small companies
- Large companies are showing willingness to lead the way and tolerating more risk
- Triggers competitors to do the same
Slippery Slope!

1. Ignore them
2. Stop monitoring them
3. Taunt them!
- Technology maturity and costs are finally to the point where we can start fielding systems!
- “Hands Off” field trials this year with early adopter farms doing “low hanging fruit” applications
Poll #3

What incremental cost would you expect to pay for a fully autonomous piece of Ag equipment? (per unit)

(Please select one)

- 10K
- 35k
- 65K
- 100k plus
Unmanned systems in Agriculture
Innovations in Land and Air

Ben Schilling
Director of Sales
Global Business Manager - Ag
NovAtel Inc
NovAtel Market Segments

Measuring (Sensing)
- Survey
- Mobile & Airborne Mapping
- Timing

Guiding (Controlling)
- Construction & Mining
- Agriculture
- Autonomous Systems
- Military & Defense
- Ground Reference Receivers
- Unmanned Systems
Trends in GNSS Positioning

90s and early 2000s: Accuracy
- Positioning techniques
- DGPS, RTK
- Multipath mitigation

Now: Availability
- Multi-constellation: GPS, GLONASS, Galileo, Beidou
- Sensor fusion
- Position + orientation

Future: Safety & Reliability
- Safety of Life applications
- Functional safety
- Protection from spoofing/jamming
Unlocking Precision and Reliability in Positioning by Mitigating GNSS limitations

Our Competitive Advantage

- **GNSS Sensor Fusion**
- **Anti-Jamming (GAJT)**
- **Authentication**

![Diagram showing GNSS sensor fusion, anti-jamming, and authentication systems.](image)
Solving Limitations

<table>
<thead>
<tr>
<th>Jamming</th>
<th>Availability</th>
<th>Spoofing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Long History in OEM Precision Agriculture
The focus is reducing size, weight, and cost of a GNSS position solution while increasing accuracy and robustness.
Achieving Reliability & Accuracy with GNSS

GNSS Signals
Multi-constellation and multi-frequency GNSS drive solution accuracy and availability

Receivers
Optimization of cost/weight/size/performance

Antenna
Critical to accuracy and often neglected

Corrections
Augmentation of GNSS to improve accuracy and reliability

Sensor Fusion
Motion and environmental sensing offsets GNSS limitations

Smaller receivers—Tightly Coupled INS - Smaller antenna’s
Safety of life applications
Multiple and redundant corrections services
Multi-sensor integration
Supporting the expansion of constellations
Waypoint post processing
Assured Positioning—Anywhere.

In our ideal view of the future, position, velocity and attitude are solved in every application, in every environment, all the time—to an appropriate level of accuracy, and with a high level of integrity.
Visit www.insidegnss.com/webinars for:

- PDF of Presentations

Contact Info:

- Major General James Poss
 james@isr-ideas.com

- Demoz Gebre-Egziabher
 gebre@umn.edu

- Mel Torrie
 Mel.Torrie@asirobots.com

- Ben Schilling
 Ben.Schilling@novatel.com
What are the big obstacles with agricultural UAS?:
(Please select all that apply)
- Can’t fly BLOS yet; no money in VLOS
- Technology isn’t there yet to provide timely ag data
- Cost margins are too tight
- 55 lbs is too small for an ag UAS
- Other
Ask the Experts – Part 2

James Poss, Maj Gen (ret), USAF
CEO, ISR Ideas

Demoz Gebre-Egziabher
Aerospace Engineer and
Mechanics Faculty
University of Minnesota

Mel Torrie
Founder and CEO
Autonomous Solutions, Inc.

Benjamin Schilling
Director
NovAtel Inc

Inside GNSS @ www.insidegnss.com
NovAtel @ www.novatel.com