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Geomatics Engineering, University of Calgary, Contributing Editor at Inside GNSS

Co-Moderator: Mike Agron, Executive Webinar Producer
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Who’s In the Audience?

KIviH

A diverse audience of over 700 professionals registered
from 59 countries, 31 states and provinces
representing the following roles:

15% Professional User

19% GNSS Equipment Manufacturer
19% Product / Application Designer
22% System Integrator

25% Other
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Welcome from Inside GNSS

Richard Fischer

4

i . Director of Business
\ & Development

Inside GNSS
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Jay Napoli

Vice-President, FOG &
OEM Sales

KVH Industries, Inc.
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Mark Petovello
Geomatics Engineering
University of Calgary
Contributing Editor
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Series to Date

/Dec ‘09: “Nuts & Bolts”

* Key inertial equations

* Integration concepts & equations

K. Demonstrate possible results

/Feb ’12: “Filling in the Gaps”

e Select an integration strategy

e Practical considerations

\. Sensor characterization

@ . :
Today: “Applying the Technologies”
e Trends e Applications * And more...
» Key challenges e Beyond GNSS/INS

Past webinars available at: http://insidegnss.com/webinars
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Poll #1

KIviH

= What would you say is the greatest challenge with
integrating GNSS/INS? (select one)

Modeling the inertial errors

ldentifying good/bad GNSS data

How to integrate other sensor data

Selecting architectures for GNSS/INS integration
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Andrey Soloviev
Principle
Qunav




Overview of GNSS Inertial
Integration

Andrey Soloviev
Principle
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Combination of complementary features of GNSS and Inertial

Integration of self-contained but drifting inertial
with GNSS that is drift-less but susceptible to interference

INS Core sensor
Navigation
Initial . Navigation OUtf uts
alignment mechanization
A
=
|
1 ] 1
: Alding : ' Motion trajectory
! measurements ! !
¥
G N SS Improved robustness of
GNSS signal processing
Secondary (weak signal tracking,
sensor interference mitigation)
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Current Status

Wide range of GNSS/Inertial products

Examples:

* Embedded GPS/INS (EGI) for military applications

Limitations: Use of relatively high grade, expensive inertial units

* GNSS/Inertial products for ground and aerial applications

Limitations: Some designs have limited capabilities in GPS denied
environments
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Development Trends

From high-grade inertial products to low-cost sensors (e.g., consumer-grade)

Motion constraints

&
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What is the Right Integration Approach _| :
KIVIH]

 Loose Integration: Fusion of navigation solutions
* Tight Integration: Fusion of navigation measurements

* Deep Integration: Integration at the signal processing level

Loose integration has limited capabilities in GNSS-challenged environments

Example: sparse GNSS position fixes in urban canyon

e R A2
[ N
o il

No GNSS data for loose integration

Some data may be still available (e.g. 2-3
satellites) for tight and deep modes

Tight and deep integration are more suitable for GNSS-challenged
environments and integration of inertial with other sensors
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Data Fusion Tools QMHI

GNSS/Inertial: Complementary Extended Kalman Filter

Measurement Assumptions:
(GNSS): 0 Linear system model;
f(R,V,a,b) +n 0 Gaussian error distribution

Non-linear function of navigation -
states & sensor biases + noise

‘lTake the difference
INS-predicted measurement:

Linearize (inertial errors generally Estimation Estimates of
f(R INS > V]NS > alNS ) allow for linearization) — update INS drift
terms

INS/GNSS+: Kalman filter is not necessarily the best option and the use of
nonlinear filtering techniques may be required

180 ,k

160 \ . |

fggeWhefe in Example: A constraint that the platform

2% stays within the hallway can be directly
i1 { incorporated using particle filters

20 Y

0
0 50 100 150 200
X.m
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Xavier Orr
Lead Software Engineer
Advanced Navigation Pty Ltd




Integration
Challenges

Xavier Orr
Lead Software Engineer
Advanced Navigation Pty Ltd




InsideGNSS

I n t ro d u ct i 0 n GPS | GALILEQ | GLONASS [COMPASS

KIVIH

= Aim to produce inertial navigation system with
superior dead reckoning

= Advanced north seeking capability
= Price target of under USD 30,000
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Orientation Accuracy

= For long term dead reckoning, highly accurate orientation
is essential

= QOrientation is tracked from gyroscopes and corrected for
errors from gravity vector and other sources
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Orientation Accuracy

X

> >

Gravity Vector v 7 Gravity Vectorv .

= High accuracy gyroscopes with very high bias stability are
essential to maintain orientation accuracy

= Accelerometers with high bias stability are essential to
provide a reference for the level orientation (gravity vector)

= Heading is more complicated
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Heading

= Possible sources of heading are GNSS velocity, magnetometers,
north seeking gyro-compassing and external references

= Magnetometers and north seeking gyro-compassing are the only
always available sources
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Magnetic Heading

Current
Carrying
Wire

Magnetic
Field

= Magnetic heading is prone to interference, particularly in
today's high tech environments

= Magnetic heading is not good for a high accuracy absolute
reference, but good for a relative reference
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North Seeking Heading

North Pole

Soth Pole
= Gyroscopes can detect the earth rotation rate

= Have to separate earth rotation from gyroscope bias, noise and
other error sources

= Accurate north seeking gyro-compassing requires high bias
stability gyroscopes
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= After market research KVH Industries 1750 IMU found to
provide best commercial gyroscopes available

= Excellent gyroscope bias stability of 0.05 degrees/hour well

suited to provide high accuracy orientation and north
seeking

= Very low bias accelerometers in 1750 allows for fast
initialization

@ B
KIVIH

1750 IMU

Fiber Optic Gyro IMU

3h
o



Initial Alignment and
Motion Constraints

Andrey Soloviev
Principle
Qunav
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Initial Alighment: Attitude Initialization ﬁlﬂﬂ

=  Motivation: INS is a dead-reckoning solution that needs to be initialized
= Position and velocity initialization is straightforward when GNSS is available

= How to initialize the attitude?
We need two know projections of two non-collinear vectors (A and B) in navigation-

frame and INS body-frame Z,
Zy B

> X
XN/ In i
Yo

Then find a rotation CE'that aligns body-frame and navigation-frame vectors’ projection
Zy,

A

NP Z,

Cy
X, |:> /_\/ |:> YN
X

ﬁ
y

N
Yb Xy,

b
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Alignment Sequence ﬁlwﬂ

= Step 1: Align vector A

Computationally rotate body-frame such that projections of vector A
are aligned with its navigation-frame projections

Z
Z N
b A Z A
Yb
= /=
YN
X
Xp C, N
Yb Xp
Body-frame view After that, body-frame is still not completely aligned
Z, with the navigation frame as there is a rotational degree
Apefore A of freedom around vector A

after

Rotation angle

~

A/Rotatlon axis




InsideGNSS

GPS | GALILEQ | GLONASS [COMPASS

Alignment Sequence

= Step 2: Align vector B

Computationally rotate body-frame (from its new orientation) around vector A such that
projections of vector B are aligned with its navigation-frame projections

C
2
Z A

A Yb |:> yy

Xp

Initial orientation

cN=cC,[C,
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Initial Alignment:

Which Two Vectors To Use? Elwﬂ

= (Classical approach

Vector 1: Acceleration due to gravity:
0 Known in navigation-frame (gravitational model);
0 Measured in body-frame (accelerometers)

Vector 2: Earth rate:
0 Known in navigation-frame (based on initial position);
0 Measured in body-frame (gyros)

Requires high-grade qyros since the Earth rate is 15 deq/hr

= Alternative approach for lower-grade inertial sensors

Vector 2: Velocity vector:

0 Navigation-frame: measured by GNSS;

0 Body-frame: assumed to be aligned with
the front axis of the vehicle

Another option: use of magnetometers
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General Approach Qwﬂ

Use as additional measurement(s) for the complementary Kalman filter

Motion constraint (which is generally a non-linear
function of navigation and motion states)

f(R,V,a,a,w) =0

-~

.

INS-predicted value: A
= ~ - piy ~ —— Linearize (inertial errors generally
f( R INS? V| NS a INS? a| NS? W| NS) allow for linearization)
J l

Kalman filter
estimation update

[ Estimates of INS drift terms |




Use of Motion Constraints: In51deGNSS

Example Qﬂﬂ

Automotive application

Zero cross-track velocity

Motion constraint

[0 1 OiChiV
l J \ )

Projection on y,-axis Coordinate transformation
from navigation into body

@ frame

Linearization
Yo
VeIOC|ty error

Cross product Attitude error

o 1 o]E(:b[esleS 0 1 Ve éelNS

<

Kalman filter measurement observable
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Ask the Experts — Part 1 glMIﬂ

1 = =
&
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Andrey Soloviev Xavier Orr Jay Napoli
Principle Lead Software Engineer Vice-President, FOG & OEM Sales
Qunav Advanced Navigation Pty Ltd KVH Industries, Inc.
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Poll #2 Qﬂﬂ

Which types of IMU technologies have you had the MOST
experience with? (Choose One)

MEMS
RLG (Ring-laser Gyros)
FOG (Fiber Optic Gyros)

Electro-mechanical

A S

Not sure or none



GNSS/INS
Implementation

Xavier Orr
Lead Software Engineer
Advanced Navigation Pty Ltd
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Spatial FOG

KIviH

Finished Integrated Product




Sensors

Accelerometers

~

v

)

Gyroscopes

~

v

\ 4

)

Magnetometers

\

/
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Body Acceleration

Gravity Vector Reference
Motion Analysis

Angular Velocity
North Seeking Gyrocompass

Motion Analysis

Speed up initial heading alignment

Zero yaw rate updates help track gyroscope bias
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Sensors

Barometric T
Pressure J

> Vertical velocity stabilization

~

>  Position, velocity and time
GNSS

> Carrier phase delta updates

Odometer

>  Pulse Count Distance Update

\

> Velocity, Speed or Zero Velocity Updates
Other Sensors

I . .
{ >  Pulse Period Average Velocity
)

>  Position updates
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Filter QMIHI

= Multiple simultaneous correction sources used

= Filter tracks history of correction standard deviation
and predicts future correction standard deviation

= Attitude corrections based on gravity vector can
introduce error

= To reduce this, the filter predicts and compensates for
linear accelerations

= Balancing inertial bias tracking and north seeking is
the biggest challenge
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Magnetometers

=  Automatic magnetic calibration
= Magnetometers speed up north seeking initialization

= During operation magnetometers used primarily for zero
yaw rate updates to assist in tracking Z axis gyroscope bias

= This makes the system immune to magnetic interference
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= GNSS provides position, velocity and time during
normal operation

= When a fix is not possible carrier phase delta is used
for velocity updates

= Tightly coupled but completely GNSS independent
architecture

= RTK available for applications requiring high accuracy
positioning

= RAIM FDE for safe operation
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Motion Analysis

= Analyses patterns in inertial data
= Zero velocity updates
= Zero yaw rate updates

= Speed prediction for forward driving vehicles under GNSS
outages
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= Previous position, velocity, heading and bias model
retained for very fast INS start

= Time tracked with RTC

= Almanac, ephemeris, position and time sent to GNSS
receiver for hot start

= Hot start allows for high accuracy orientation quickly
= |deal for vehicles that don't move when powered down

= Fast recovery from power outages
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Timing & Update Rate

KIviH

= Timing is critical for INS

= High update rate reduces integration and other errors
but requires a lot of computing power and careful
balancing of resources

= To achieve this we designed our own safety oriented
real time operating system

= Direct Memory Access (DMA) is the key to balancing
resources and achieving accurate timing

= Powerful processor with Floating Point Unit and lots
of RAM required
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External Data

= Delay estimation
= Standard deviation estimation
= External navigation aids

Local RF positioning systems
Rangefinders (Laser, ultrasonic, IR)
RFID position tags

WiFi

Vision and stereo vision

Stereo audio
SLAM
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Land, Air & Marine Applications
KIVIH

= Navigation through GNSS outages and jamming

= Navigation in tunnels, indoor environments and
around structures obstructing satellite view

= Beneficial for aircraft to maintain navigation through
rolls that can cause degraded GNSS visibility

= Safety conscious autonomous vehicles
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= Subsea versions specially designed and optimized for
underwater navigation

= High level of motion constraints allows for superior
navigation performance underwater

ADVANCED

NAVIGATION




Beyond GNSS/INS
Integration

Andrey Soloviev
Principle
Qunav
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Generic Integration Approach QMHI

* INS is a core sensor;

e Other sensors provide reference data (when available) to reduce drift in inertial
navigation outputs

Measurement
(GNSS, laser, vision, etc.):
f(R,V,a,b) +n
Non-linear function of navigation
states & sensor biases + noise -

@+ Take the difference
INS-predicted measurement:

f(R INS > VINS > aINS )

h 4

Estimation update (EKF or non-
linear estimation techniques)

v
[ Estimates of INS drift terms ]
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Example Case Study 1 KIVIH|

* How to extend GNSS/INS integration principles to include other sensors?

* Example: Integration of inertial and GNSS carrier phase

Temporal phase changes are applied as measurement observables of
the Kalman filter to eliminate integer ambiguities

Ad = (L) - §(t,)=Ap + Adt,,, + N

Line-of:site (LOS) -(6AR)<— Delta position or
e unit vector position change
»

Receiver Represented in a generic format:

(rcvr) Ad) — Hk AR +D _bk_l_r]

proj 4 Proj

Coordinate
origin \ /

Projection matrices

Bias states
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Example Case Study 2

The same generic format can be applied for integration with other sensors whose
measurements are related to position change (AR)

Odometer !
2D lidar 3D lidar

Position change Xp

projected onto Position change Position change projected

forward axis projected onto x and onto a normal vector of a
y axes of the body- planar surface extracted
frame from lidar image

The integration software can fully utilize GNSS/INS development results, the
developer just needs to select different projection matrices.



InsideGNSS

GPS | GALILEQ | GLONASS [COMPASS

Non-Linear Filtering Techniques EMﬂ

» Extension of the EKF to support non-linear aiding measurements:
Example: Map-matching (hallway layout, Wi-Fi fingerprinting)

» For integration with INS, the extension is based on a marginalized particle filter (MPF):
The estimation space is partitioned into linear and non-linear sub-spaces;

Optimal EKF estimation is applied for the linear sub-space;
Monte-Carlo approximation (a.k.a particle filter) is used for the non-linear sub-space;

When aiding measurements arrive:
-Particle weights are updated (likelihood
® of the particle given the measurement);
- For each particle, EKF state vector and
I 3 covariance are updated

et

- N
o
i

Initial particles states Q-
(e.g. position states) are e + / -

sampled from an a . ) )

priory pdf Particle states and their EKF covariances are

propagated using INS
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Example Simulation Results EMﬂ

» Integration of low-cost MEMS inertial, Vision, partial GPS (2 visible SVs) and a hallway layout

Initial distribution of particles

: : 3 | 180
180 | e bttt T
| | ? 160
160 || Y N
g Il 140- True position
3 | 3 °
| | | 120~ | : | : : : : :
120 {o{ R N SR | | | | : : | E
£ : f : Egoo | | SR SN SO W N N S
57100 ‘ ‘ o > i i i
; ; | ; 80 {1 i Ik ;
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Poll #3 EMH

What challenges, if any, have you experienced with IMU
technology? (Select all that apply)

1. Performance/accuracy limitations
2. Data communications

3. Size or weight

4. Interface connection issues

5

None
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Next Steps

Contact Info:

* For more information visit:
www.kvh.com/1750imu

* Email specific questions to: Sean McCormack: smccormack@kvh.com

For more information:
e Visit www.insidegnss.com/webinars for:

e PDF of Presentation
e List of resources provided
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Ask the Experts — Part 2 glMIﬂ
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Andrey Soloviev Xavier Orr Jay Napoli
Principle Lead Software Engineer Vice-President, FOG & OEM Sales
Qunav Advanced Navigation Pty Ltd KVH Industries, Inc.
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Jay Napoli

Vice-President, FOG &
OEM Sales
KVH Industries, Inc.
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Thank You! QMHI

Andrey Soloviev Xavier Orr Jay Napoli
Principle Lead Software Engineer Vice-President, FOG & OEM Sales
Qunav Advanced Navigation Pty Ltd KVH Industries, Inc.




