

Tuesday, January 22, 2013

Noon - 1:30 pm PDT

1 pm - 2:30 pm MDT

2 pm - 3:30 pm CDT

3 pm - 4:30 pm EDT

GNSS PERFORMANCE STANDARDS & CERTIFICATION

BEYOND SPECTRUM PROTECTION

AUDIO IS AVAILABLE VIA LANDLINE OR VOIP

For VoIP: You will be connected to audio using your computer's speakers or headset.

For Landline: Please select Use Audio Mode Use Telephone after joining the Webinar.

US/Canada attendees dial +1 (702) 489-0000• Access Code 470-304-043

WELCOME TO:

GNSS Performance Standards & Certification:

Beyond Spectrum Protection

Jules McNeff
Overlook Systems Technologies, Inc.
VP, Strategy & Programs

Chris Hegarty
MITRE Corporation
Director, Communication,
Navigation & Surveillance
Engineering

Ron Borsato
Spirent Communications
Principal Architect

Audio is available via landline or VoIP

For VoIP:
You will be connected to audio using your computer's speakers or headset.

For Landline:
Please select Use Audio
Mode Use Telephone after
joining the Webinar.

US/Canada attendees dial +1 1 (702) 489-0000 Access Code 470-304-043

Moderator: Demoz Gebre-Egziabher, Aerospace Engineer and Mechanics

Faculty at University of Minnesota

Co-Moderator: Lori Dearman, Sr. Webinar Producer

Who's In the Audience?

A diverse audience of over 375 professionals registered from 43 countries, 28 states and provinces representing the following roles:

- 22% GNSS End User
- **22%** GNSS Equipment Manufacturer
- 20% Government/Policy Maker
- 19% Product / Application Designer
- 17% System Integrator

Welcome from Inside GNSS

GNSS & Space Weather:Sources, Characteristics and Mitigation of Effects

Demoz Gebre-Egziabher

Aerospace Engineer and Mechanics Faculty,
University of Minnesota

Poll #1

My understanding is that GNSS receiver standards and certification are primarily aimed at ensuring that:

- 1. GNSS receivers work as intended when used
- 2. Wireless devices don't interfere with GNSS
- 3. All of the above

Featured Presenters – Panel Intro

Jules McNeff
Overlook Systems Technologies, Inc.
VP, Strategy & Programs

Chris Hegarty
MITRE Corporation
Director, Communication,
Navigation & Surveillance
Engineering

Ron Borsato
Spirent Communications
Principal Architect

GPS Receiver Operation

Spectrum Access & Performance Certification

Jules McNeff Overlook Systems Technologies, Inc.

Spectrum Realities & Obligations (1/2)

- Spectrum Regulators (FCC & NTIA)
 - Acknowledge GPS (GNSS) signal strength limitations
 - ~ -150 to -160 dB (below noise floor at ~ -145 dB)
 - Acknowledge unique GPS (GNSS) signal processing requirements
 - Navigation message bit transitions vital to precision
 - Digital communications focuses on bit detection, not on timing
 - Digital navigation focuses on bit transitions (bit sequence already known)

Spectrum Realities & Obligations (2/2)

Spectrum Users (GPS Receivers)

- Live within RNSS bandwidth allocations
 - L1 GPS ~ 1560 to1590 MHz (L1 RNSS = 1559 to 1610 MHz)
- Anticipate pressures for spectrum access in adjacent bands
 - Decreasing assurance of "quiet neighborhood"
 - Plan to use additional GPS signals for multi-frequency benefits
- Accept that GPS cannot be made "bulletproof" to interference
 - GPS performance include consideration of augmentations & complements (Integrated PNT solutions) in the future

GPS Specifications & Standards

- GPS Interface Specifications (IS) available at GPS.gov
 - IS-GPS-200E (Receiver interface requirements for L1 & L2)
 - C/A-code, P(Y)-Code, L2C-Code
 - IS-GPS-705A (Receiver interface requirements for L5)
 - IS-GPS-800A (Receiver interface requirements for L1C)

- GPS Receiver Performance Standards/Criteria
 - By application (i.e., aviation, maritime, timing/synchronization, etc.)
 - Defined by regulators and applications standards bodies

GPS Receiver Performance Elements

- Signal reception
 - Antenna, RF front end parameters (includes filtering)
- Signal demodulation/down-conversion
 - Code/carrier tracking, data detection (phase changes)
 & data demodulation read navigation message
- Signal processing
 - Calculate navigation solution (Position, Velocity, Time)
- Applications
 - Qualitative requirements affect quantitative receiver design decisions

Remarks on "GNSS Performance Standards and Certification" from an Aviation Perspective

Christopher J. Hegarty
MITRE Corporation
Director, Communication, Navigation &
Surveillance Engineering

GNSS Aviation Standards - Overview

- International
 - GNSS Standards and Recommended Practices (SARPs) first adopted by the International Civil Aviation Organization (ICAO) in 2001
 - Subsequently amended 11 times
- Domestic
 - FAA responsible for civil avionics certification per CFR Title 14
 - Technical Standard Orders (TSOs) one popular certification path
- Current standards are for L1-only avionics

Source: www.icao.int.

Source: www.faa.gov.

© 2013 The MITRE Corporation. All rights reserved.

FAA GNSS Technical Standard Orders

Equipment	TSO	Invoked RTCA Document	Date First Published	Status
Stand-alone GPS	TSO-C129	DO-208	1992	Cancelled
Stand-alone GPS	TSO-C196	DO-316	2009	Active
Antennas	TSO-C144	DO-228	1998	Active
Antennas	TSO-C190	DO-301	2007	Active
GPS/Satellite-based Augmentation System (SBAS)	TSO-C145	DO-229	1998	Active
GPS/SBAS	TSO-C146	DO-229	1998	Active
GPS/Ground-based Augmentation System (GBAS)	TSO-C161	DO-253	2003	Active

RTCA Minimum Operational Performance Standards (MOPS)

- Each typically hundreds of pages
- ~100's of requirements
 - Minimum functionality and performance
 - Environmental conditions
- Test procedures

Interference Requirements Span 1315 – 2000 MHz

GNSS Receiver Standards and Certification for Wireless Devices

GNSS Performance Standards & Certification: Beyond Spectrum Protection Ronald Borsato – Principle Architect Spirent Communications

Who's Who In GNSS Conformance Testing for Wireless?

- Standards Development Organizations:
 - **3GPP**: 3rd Generation Partnership Project
 - WCDMA, GSM and LTE Conformance Tests
 - **3GPP2:** 3rd Generation Partnership Project 2
 - CDMA Conformance Tests
- Certification Bodies
 - GCF: Global Certification Forum
 - PTCRB: PCS Type Certification and Review Board
 - CCF: CDMA Certification Forum
 - CTIA: The Wireless Association
 - Test Plan for Wireless Device Over-the-Air Performance

A-GNSS Performance Standards

WCDMA

3GPPTS 34.171 – A-GPS RF minimum performance

3GPPTS 34.172 – A-GNSS RF minimum performance (GPS+GLONASS)

GSM

3GPPTS 51.010 - 70.11 - A-GPS Minimum Performance

3GPPTS 51.010 - 70.16 - A-GNSS Minimum Performance

LTE/WCDMA

3GPPTS 37.571-1 – LTE/WCDMA A-GNSS Minimum Performance

CDMA

3GPP2 C.Soo36-o v2.o – A-GPS RF Minimum Performance

3GPP2 C.Soo36-A – A-GNSS RF Minimum Performance

A-GPS OTA Test: CTIA Test Plan for Wireless Device Over-the-Air Performance

A-GNSS Minimum Performance Testing

- A-GPS, A-GPS+A-GLONASS and A-GLONASS Operation
- UE-based and UE-Assisted Positioning Modes
- A-GNSS Receiver Performance Tests
 - Nominal Accuracy
 - Sensitivity
 - Multipath
 - Dynamic Range
 - Moving scenario
- A-GNSS Aspects Only
 - No Additional Interferers other than Supporting Wireless Radio Bearer

A-GPS Over-the-Air Testing

Typical Anechoic Chamber A-GPS OTA Test System

A-GPS Over-the-Air Testing

- CTIA A-GPS OTA test procedure:
 - Antenna pattern
 - Use UE SV C/N_o measurements from GPS Accuracy test
 - Two Polarizations in 30° Increments in Theta (Θ) and Phi (Φ)
 - Linearization
 - Correct UE SV C/N_o measurements with a Known Signal Source
 - Radiated sensitivity (EIS_{ref})
 - Perform GPS Sensitivity Search at Pattern Peak (Θ = 0° to 90°)
 - Use same GPS Sensitivity test case (satellite scenario, performance metrics, etc.) as Industry Standard
 - Provides Traceability for OTA Test to Conducted Test

A-GPS Over-the-Air Testing

- CTIA A-GPS OTA test procedure (cont):
 - Calculation of Spatially Averaged Quantities
 - Total Isotropic Sensitivity (TIS)
 - Upper Hemisphere Isotropic Sensitivity (UHIS)
 - Partial Isotropic GPS Sensitivity (PIGS) calculation

$$TIS \cong \frac{2NM}{\pi \sum\limits_{i=1}^{N-1}\sum\limits_{j=0}^{M-1} \left[\frac{1}{EIS_{\theta}\left(\theta_{i},\phi_{j}\right)} + \frac{1}{EIS_{\theta}\left(\theta_{i},\phi_{j}\right)}\right] \sin(\theta_{i})}$$

- Intermediate channel degradation
 - Evaluate Impact on GPS Performance at Wireless Device Radio Operating Frequencies
 - Compare Performance vs. Reference Frequencies Used for Full OTA Measurement

Ask the Experts – Part 1

Jules McNeff
Overlook Systems Technologies, Inc.
VP, Strategy & Programs

Chris Hegarty
MITRE Corporation
Director, Communication,
Navigation & Surveillance
Engineering

Ron Borsato
Spirent Communications
Principal Architect

Poll #2

Standards and certification are important so that I don't have to worry about performance details. (Select one)

- 1) Agree
- 2) Disagree

Part II

GNSS Performance Standards & Certification: Beyond Spectrum Protection

Ronald Borsato – Principle Architect Spirent Communications

Lessons Learned and Specific Use Cases - Lightsquared

Original Lightsquared Spectrum Deployment Plans

^{*} Only upper 5-MHz LTE carrier is used in Phase-o. both 5-MHz carriers are used in Phase-1.

Lightsquared Downlink LTE L-Band and GPS Band Source: Lightsquared, 3GPP R4-110470, January 2011

Lessons Learned and Specific Use Cases - Lightsquared

- Cellular TWG Developed Test Plan to Evaluate GPS Performance Impact of LTE Downlink Signals
 - Receiver Blocking and Intermodulation Test Scenarios
 - Utilized Realistic Interferers using Signal Generators
 - Frequency Allocations
 - Phase 1, Phase 2, and Lower 10 MHz Only
 - Modulation Coding Schemes (LTE DL OFDM)
 - Interferer Signal Levels Varied to Determine Failure Point
- Test Cases Based on Existing Industry A-GPS Performance Standards
 - Impact Traceable to Defined Performance Criteria
- Cellular TWG Concluded that Lower 10 MHz did not Cause Harmful Interference to Cellular A-GPS Operations

Lessons Learned and Specific Use Cases — LTE Band 13

- LTE Band 13 Transmit Band 2nd Harmonic
 - UE Transmit Configuration (Upper C Block)
 - Carrier Frequency = 781 MHz
 - RF Channel BW = 10MHz (Actual: 50 RB * 180 kHz = 9 MHz)
 - Resource Allocation at Bandedge
 - Last Allocated Resource Extends to 786.5 MHz
 - 2nd Harmonic Falls at 1573 MHz
 - Any Out of Band Emissions Would Spill Over to GPS
 - Highlights the Need to Evaluate GPS Receive Performance with Specific Transmit Configurations

Possible Future GNSS Performance Standards

- Interference Testing
 - Receiver Blocking and Intermodulation Tests
 - Utilize Realistic Interferers
 - Frequency Allocations
 - Modulation Coding Schemes
 - Interference Signal Levels
- Expanding OTA Testing to Include Additional Interference Sources
 - Multi-Radio Operation within Devices
- Applying A-GNSS Performance Testing Concepts in Other GNSS Market Segments
- Any Additions would Require Necessary Work Items in the Representative Standards and Certification Bodies

Part II

Christopher J. Hegarty
MITRE Corporation
Director, Communication, Navigation &
Surveillance Engineering

Receiver Standards for Spectrum Efficiency — An Abbreviated History

- March 2003 FCC Notice of Inquiry
- February 2012 LightSquared Request (to FCC) for Initiation of Proceedings
- July 2012 PCAST report
- November 2012 House "Role of Receivers in a Spectrum Scarce World" hearing
- Feb 2013 GAO report due per H.R. 3630

Observations

- Receiver standards are onerous
 - Not recommended for all
- Existence of standards is not sufficient to avoid compatibility issues
 - E.g., consider the aviation community's experience with LightSquared
- Not a reasonable expectation that all GNSS receivers can conform to one interference mask
 - Greatly-varied capabilities
 - Greatly-varied size, weight, power, and cost

RF Filter Size Comparison

SAW BAW 3-pole ceramic U.S. Quarter $(1.4 \times 1.2 \times 0.5 \text{ mm}^3)$ $(3.3 \times 1.6 \times 0.8 \text{ mm}^3)$ $(20 \times 14 \times 7 \text{ mm}^3)$ $(24 \text{ mm} \times 1.8 \text{ mm})$

6-pole cavity $(178 \times 66 \times 31 \text{ mm}^3)$

Part II

Spectrum Access & Performance Certification

Jules McNeff Overlook Systems Technologies, Inc.

Notional Receiver Certification Categories

Technical Certification

- Receiver engineering design IAW relevant GPS Interface Specification(s)
- Operation within GPS assigned spectrum
- Calculation of navigation solution

Performance Certification

- Receiver data processing IAW application performance requirements
- Resiliency in the presence of interference
- Security Certification (if applicable)
 - Receiver processing of security information in navigation message
 - Protection of security features from unauthorized access

Issues Affecting Certification (1/2)

Certification scope

- Technical parameters for GPS receivers defined in IS
- Performance parameters defined by application category
- Consensus on common certification criteria?
 - Integrated System v Component level
 - Single frequency v multi-frequency

Issues Affecting Certification (2/2)

Process models

- Government conducted/government oversight
 - Safety certification for aviation receivers
 - Approvals for design/manufacture (IAW FAA Orders)
 - DoD GPS receiver certification (military receivers only)
 - Planning stages at present
 - Process may be applicable to civil problem (separate funding)
- Industry conducted
 - Independent laboratory (U/L model)
 - Individual self-certification (maritime compliance w/ IMO standards)
 - Industry associations set application standards

Future Considerations (1/2)

- Role of Government (Federal Rulemaking Agencies, FCC & NTIA)
 - Establish consistent, stable policies on PNT services
 - Conduct rulemaking in the open, solicit industry input
 - Establish performance parameters for critical infrastructure & safety applications
 - Take advantage of multiple civil signals for interference mitigation
 - Take account of unique GPS/GNSS reception & processing requirements

Future Considerations (2/2)

- Role of Industry (GPS/GNSS receiver manufacturers)
 - Develop consensus on receiver parameters
 - Application based framework
 - Operation within RNSS spectrum allocations
 - Take advantage of multiple frequencies
 - GPS Industry Council facilitation?
 - Be proactive rather than reactive with government regulators
 - Constantly work to ensure government regulators are taking account of the special nature of GPS signals (from slide 1) in their rulemaking actions

Poll #3

Testing to a standard would reduce test time development and save development costs.

- 1) Agree
- 2) Disagree

Next Steps

Contact Info:

Spirent

+44 1803 546325
globalsales@spirent.com
www.spirent.com/positioning

For more information:

- Visit <u>www.insidegnss.com/webinars</u> for:
 - PDF of Presentation
 - List of resources provided

Ask the Experts – Part 2

Jules McNeff
Overlook Systems Technologies, Inc.
VP, Strategy & Programs

Chris Hegarty
MITRE Corporation
Director, Communication,
Navigation & Surveillance
Engineering

Ron Borsato
Spirent Communications
Principal Architect

www.spirent.com/positioning

A word from the sponsor

Steve Hickling

Lead Product Manager Spirent

www.spirent.com/positioning