sponsored by

inside unmanned systems

MAPPING FROM UAVS

HOW TO OPTIMIZE ACCURACY AND EFFICIENCY USING GNSS-INERTIAL SOLUTIONS

Thursday, April 7 2016

WELCOME TO Mapping from UAVs

How to Optimize Accuracy and Efficiency Using GNSS-Inertial Solutions

Mohamed M.R. Mostafa
Chief Technology Officer
Navmatica Corporation

Mike Hogan
Business Development
Manager
Avyon

Trond Løke
Chief Technology Officer
Hyperspectral Group

Co-Moderator: Lori Dearman, Sr. Webinar Producer

Who's In the Audience?

A diverse audience of over 600 GNSS and unmanned professionals registered from 58 countries, 29 states and provinces representing the following categories:

- 50% GIS/Surveying
- **12% Precision Agriculture**
- 10% Transportation
 - 6% Critical Infrastructure/Utilities/ Power Grid
 - **5% Natural Resource Management**
 - 4% Oil and Gas
- 13% Other

Welcome from Inside GNSS

Welcome from *Applanix*

Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty University of Minnesota

Poll #1

What type of sensor payload are you interested in using for mapping applications from UAV? (Select all that apply)

- a. RGB
- b. Infra-red Camera
- c. LiDAR
- d. Multi-spectral Camera
- e. Hyperspectral Camera

UAV Data Georeferencing: Theory and Applications

Mohamed MR Mostafa Chief Technology Officer Navmatica

Automotive Applications

Aerospace Engineering Applications

Courtesy of NASA, US Navy, FAA, DLR

Medical Engineering Applications

Navmatica

Courtesy of University of Toronto

Airborne Mapping

Indoor Mapping

Mobile Mapping

Seafloor Mapping

Navmatica

Large Format Cameras

Medium Format Cameras

Spherical Camera

Small Format Cameras

LiDAR

Hyperspectral

Digital Frame imagery

Video frames

Navmatica

GNSS Revisited

- GNSS includes GPS, GLONASS, BeiDou, Galileo
- Relative Positioning allows for cm level accuracy using:
 - Base Stations
 - CORS
 - IGS
 - Real-time or post-processed VRS

GNSS	Real Time Accuracy	Post- Processing needed	Range	Integration	Applications
RTK	~ 5 cm	No	Limited to radio link range of 5 km	Limited to loosely coupled	 Emergency Response Reconnaissance Surveillance Monitoring Moderate precision mapping
PPK	~ 5 m	Yes	• Unlimited	• unlimited	High precision mapping

- GNSS is used to aid the inertial navigation solution.
- In airborne applications, this is best done on the tightly coupled level
- When GPS-drops out, the inertial navigation solution continues unaided
- Continuous closed-loop error controller maintains optimal performance by bounding position and orientation errors and calibrating inertial sensor errors

Georeferencing in Photogrammetry

Aerial Triangulation

- Establish & Survey GCPs
- Measure image points
- Compute camera position
 & orientation using AT
- Produce mapping products

Direct Georeferencing

- Measure camera position
 & orientation using
 GNSS/Inertial
- QC the data
- Produce mapping products
- No GCP needed

Ground Control Points (GCP)

GCP (Established or paneled)

Photo-Identifiable GCP

Camera interior geometry

- Calibrated in lab environment or as part of a self-calibration mechanism from flight data
- Correlated with boresight angles
- Its Stability is engineered in professional grade cameras
- If calibrated over a calibration field, it could be held fixed (known) for the rest of the mission

LENS Distortion (radial)

Image plane

Rear (exit) nodal point

Front (entrance) nodal point

$$\Delta r = k_1 r^3 + k_2 r^5 + k_3 r^7$$

Aerial Triangulation (AT)

- Fly a block of images
- Must fly 80% x 80% image overlap &sidelap
- Measure tie/pass/GCP on all images
- GCPs are necessary
- An Image Block is necessary
- Block Geometry Strength is necessary
- Thousands of tie/pass points are necessary
- In non-urban environments, tie/pass points are challenging to find
- Self Calibration is necessary

What is Direct Georeferencing?

- Measure imaging sensor position & orientation using GNSS/Inertial
- QC the data
- Produce mapping products
- No GCP needed

- DG can be used with any type of Imaging Sensor
- DG must be used with LiDAR, SAR and Scanning sensors

Boresight Calibration

Direction of Flight

- Boresight is the physical mounting angles of an IMU w.r.t. a camera
- Boresight matrix is assumed constant at all times
- Boresight is computed using:
 - Image rotation matrix
 - IMU-derived rotation matrix
- How well the imaging geometry is established (camera calibration?)
- Correlation between the camera calibration and boresight?
- This necessitates the simultaneous calibration of boresight and camera

$$\mathbf{R}_{c}^{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta_{x} & \sin\Theta_{x} \\ 0 & -\sin\Theta_{x} & \cos\Theta_{x} \end{bmatrix} \begin{bmatrix} \cos\Theta_{y} & 0 & -\sin\Theta_{y} \\ 0 & 1 & 0 \\ \sin\Theta_{y} & 0 & \cos\Theta_{y} \end{bmatrix} \begin{bmatrix} \cos\Theta_{z} & \sin\Theta_{z} & 0 \\ -\sin\Theta_{z} & \cos\Theta_{z} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\Theta_y \cos\Theta_z & \cos\Theta_y \sin\Theta_z & -\sin\Theta_y \\ \sin\Theta_x \sin\Theta_y \cos\Theta_z - \cos\Theta_x \sin\Theta_z & \sin\Theta_x \sin\Theta_y \sin\Theta_z + \cos\Theta_x \cos\Theta_z & \sin\Theta_x \cos\Theta_y \\ \cos\Theta_x \sin\Theta_y \cos\Theta_z + \sin\Theta_x \sin\Theta_z & \cos\Theta_x \sin\Theta_y \sin\Theta_z - \sin\Theta_x \cos\Theta_z & \cos\Theta_x \cos\Theta_y \end{bmatrix}$$

Simplified Error Budget

Direct Georeferencing

- GCPs are not needed (control is in the air)
- Single image + DEM = Orthophoto generation
- One stereo pair with minimum overlap for Topo
 Mapping & DEM Extraction
- NO Image Blocks needed
- Fly any Overlap
- Fly any Sidelap
- No Tie Points needed (QC only)
- No Self Calibration is necessary (QC only)

Single image + DEM = Ortho

Stereo pair for Topo Mapping & DEM Extraction

One or more image strips for Corridor mapping

Direct Georeferencing QC Example

Aerial Triangulation

- Must fly 80% overlap
- Must fly 80% sidelap
- Tie Point quality & volume depends on AOI
- An image Block is necessary
- Block geometric strength is necessary
- Self-Calibration every mission
- GCP always required

Direct Georeferencing

- Can fly any overlap (to address mapping)
- minimal sidelap (to address mapping)
- Tie Points are not required— (only for QC)
- Can fly one or more strips
- No Need for Blocks
- No Self Calibration necessary (only QC)
- No GCP required (only QC)

Real-World Examples (1/2)

Company

Avyon

Project

- Location: Fryer Dam near Richelieu, QC
- 450 m x 100 m block (0.7cm GSD)

Platform

microdrones md4-1000

Payload

- Sony a7R camera with APX-15 UAV
- Zeiss Sonnar T* 35 mm lens

Flight profile

- 2 flight lines ~30% sidelap & ~85% endlap
- 12-minute flight time
- 14 km/h platform speed
- 5 GCP's distributed at each end of the dam

Processing Workflow

- POSPac:
 - GNSS/Inertial processing
 - Boresight calibration
 - Interior geometry calibration
 - Lens distortion held fixed
- Inpho photogrammetric SW:
 - Extract DSM from stereo imagery
 - Generate 1 cm GSD orthomosaic

	dE	dN
Number of Points	5	5
Mean Error	0.031	-0.009
Standard Deviation (m)	0.017	0.014
RMSE (m)	0.034	0.015

Mian, O., Lutes, J., Lipa, G., Hutton, J. J., Gavelle, E., and Borghini, S.: Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms. IAPRS, Spatial Inf. Sci., XL-3/W4, 77-83, doi:10.5194/isprs-archives-XL-3-W4-77-2016, 2016.

md4-1000 High Precision Solution: Accuracy and Efficiency

Mike Hogan
Business Development
Avyon

- Avyon provides professional small Unmanned Aerial System (UAS) solutions to various industries and markets in North America
- Main focus: survey and mapping
- Avyon Partners: Delair-Tech and microdrones

- Efficiency
- Safety
- Flexibility
 - Multiple Sensors
- Economical
- Repeatability

Greater Access to Geospatial Data

md4-1000 High Precision Solution

- md4-1000 platform + Direct Georeferencing = md4-1000 High Precision
- Output Accurate position, orientation and timing

- Light Weight GPS/GLONASS Antenna
- 25 g

- Full Frame COTS camera – 42 MP
- 35 mm fixed lens
- Calibrated
- 507 g

- 220 channel GNSS Receiver
- Calibrated IMU with Data rate of 200 Hz
- 60 g

Ask the Experts – Part 1

Mike HoganBusiness Development Manager
Avyon

Trond Løke
Chief Technology Officer
Hyperspectral Group

Mohamed M.R. Mostafa
Chief Technology Officer
Navmatica Corporation

Poll #2

The accuracy of which PNT measurement is most important for direct geo-referencing? (please select your top two)

- a. Accurate position
- b. Accurate attitude
- c. Sensor geometric accuracy
- d. Accurate time tagging

md4-1000 High Precision Solution: Accuracy and Efficiency

Mike Hogan
Business Development
Avyon

Opportunities for Efficiency

Potential Savings

- Project planning
- GCP layout and installation = no requirement for GCP
- Flight time less side lap = decrease flt time or more area covered
- Data processing

Other opportunities

- Corridor mapping
- Mapping inaccessible areas

Example One (1/3) – Efficiency

- Sample Area: 500 m x 500 m
 - Typical area for Line of sight small UAS operations
- Flying Ht: 120 m
- Flying Speed: 6 m/s
- Camera: Sony RX1R ii
- Front lap: 80%
- Side lap: will depend on mapping configuration

md4-1000 High Precision 40% Side Lap

md4-1000 80% Side Lap

15 mins	Flt Time	35 min
215	# Photos	650

Workflow Task	md4-1000 (Aerial Triangulation)	md4-1000 High Precision (Direct Georeferencing)	Difference
Plan Project	1 hrs	1 hrs	-
GCP Layout	2 hrs	-	2 hrs
Flight	35 mins	15 mins	20 mins
Data Processing	12 hrs	4 hrs	8 hrs
Total	15hrs 35 mins	5 hrs 15 mins	10 hrs 20 min

Example Two (1/3) Accuracy

- Fryer Dam
- Challenges
 - Could not access
 - Crossing river
- Requirement
 - Orthomosaic/DSM Sub meter

Example Two (2/3) Accuracy

- 11 Flights
 - 1 NADIR APX-15 UAV (red)
 - 4 North (blue)
 - 4 South (green)
 - 3 Over structures (yellow)

Example Two (3/3) Accuracy

- Horizontal accuracy was less than 4 cm (RMS) approx. 4 x GSD
- Vertical accuracy was less than 10 cm (RMS) or approx. 10 x GSD

	dE	dN	dH
Number of Points	5	5	5
Mean Error	0.031	-0.009	-0.023
Standard Deviation (m)	0.017	0.014	0.101
RMSE (m)	0.034	0.015	0.093

Mian, O., Lutes, J., Lipa, G., Hutton, J. J., Gavelle, E., and Borghini, S.: Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms. IAPRS, Spatial Inf. Sci., XL-3/W4, 77-83, doi:10.5194/isprs-archives-XL-3-W4-77-2016, 2016.

- md4-1000 High Precision provides:
 - Potential for considerable efficiency in operations (Time/Money)
 - Ability to meet required accuracy standards using proven methodologies and workflow
- Under development:
 - md4-3000 High Precision
 - Medium format professional cameras
 - LiDAR
 - Hyperspectral
 - BVLOS
 - Corridor mapping

Scientific Grade Hyperspectral UAV Solution: HySpex Mjolnir-1024

Key Specifications and Performance

Trond Løke CTO HySpex Division

Imaging: Measurement of light (radiance) as a function of spatial position

Spectrometry: Measurement of light (radiance) as a function of wavelength

- Different substances have different reflection spectra
- Hyperspectral imaging provides a detailed spectrum from each pixel in a 2d image
- -> Very well suited for automatic image processing and quantitative measurements

- For illustration, consider this model landscape containing
 - plants, one of which is artificial (which?)
 - a Lego "missing person" (where?)

- Monochromatic or broadband (B/W): one grey level value per pixel, no spectral information
- Multispectral (incl RGB):
 3 10 spectral bands,
 limited spectral information
- Hyperspectral*: tens or hundreds of narrow and contiguous bands, detailed spectral information

*Also known as imaging spectroscopy or spectroscopic imaging

Result from spectral classification

- Classification
 - pixels assigned to classes representing different materials
 - classifier trained on a small part of data for which class is known
 - classification is automatically generalized to the entire image
- Here, the artificial plant is easily separated out

Result from spectral anomaly detection

- Detection
 - searches for extraordinary pixel spectra (anomaly detection) or for spectra consistent with a known material (signature detection)
 - finds needles in haystacks!
 - can automate search tasks in military and civilian applications
- Here, the Lego man is detected as a strong spectral anomaly

Some applications of airborne hyperspectral imaging

Defense and security: Military target detection/identification, surveillance, search and rescue.

Forest mapping/classification, forest health monitoring Forestry: Agriculture: Precision farming, growth monitoring, yield prediction

Geology: Mineral mapping, environmental impact around mine areas

Environmental: Algae blooming, oil spill detection, land and sea monitoring

Land use monitoring, urban planning/management Government:

Forestry:

Oil spill detection and identification:

Mineral mapping:

The first (and only?) truly scientific grade hyperspectral solution for small UAVs....

Demo in Toulouse 04/04-16

- Based on ODIN optical design
- Key components:
 - PicolTX i7 computer
 - Hyperspectral camera based on resampling (1392x480 -> 1024x200)
 - Mjolnir controller card (IOs, shutter, frequency divider, 3,3V ->5V, APX interface)
 - Applanix APX-15 UAV
- Optional:
 - Video link
 - HD RGB video camera (GoPro/BlackMagic)
 - FLIR Video camera (IR)
 - Video from mission computer screen
 - CamFlight FX8HL UAV

Camera specifications:

	Spectral range	400 – 1000 nm
	Spatial pixels	1024
	Spectral channels and sampling	200 bands @ 3 nm
	F-number	F1.8
	FOV	20°
	Pixel FOV across/along	0.34/0.34 mrad
ıg	Bit resolution	16 bit
	Noise floor	2.34 e ⁻
	Dynamic range	4400
	Peak SNR (at full resolution)	> 180
	Max speed	285 fps
	Power consumption*	50 W
	Dimensions (l–w–h)*	250 – 175 – 170 mm
	Weight*	< 4.5 kg

HySpex spectrometer calibration and characterization

Instrument calibration:

Radiometric/sensor:

- Dark signal (automatic shutter)
- Pixel responsivity, nonuniformity
- Bad pixels

Spectral:

 Wavelength as a function of sensor row number (band number)

Geometric:

 FOV per pixel (for georeferencing)

Calibration data for image calibration.

Essential!

http://www.hyspex.no/guide/

Instrument characterization:

Radiometric/sensor:

- Linearity
- Noise, SNR, NER
- Dynamic range
- Stray light

Spectral:

- Spectral resolution, spectral misregistration

Geometric:

- FOV per pixel (sensor model)
- Total FOV
- Spatial resolution,
- Spatial misregistration

All hyperspectral instruments should be delivered with:

- Calibration data
- Detailed test/calibration report
- Sensor model

Documenting system performance.

Nice to have!

Applanix APX-15 UAV

	SPS	DGPS	RTK ⁴	Post-Processed ⁵
Position (m)	1.5 - 3.0	0.5 - 2.0	0.02 - 0.05	0.02 - 0.05
Velocity (m/s)	0.05	0.05	0.02	0.015
Roll & Pitch (deg)	0.04	0.03	0.03	0.025
True Heading ³ (deg)	0.30	0.28	0.18	0.080

- The APX-15 provides the best weight/size/price/performance trade-off on the market
- Mjolnir will work with any external INS as well with an event input.

Antenna:

Selected the best antenna when it comes to suppressing PWM noise from the UAV on L2

Grounding plane:

Putting a 10cm diameter aluminum plate under the GPS antenna reduces the noise further.

Signal to noise ratio:

Timing of every frame

Normal timing accuracy on the event input on different navigation system is< 1us.

Frequency divider

Timing accuracy on the event input on APX-15 UAV is better than $1\mu s$.

- Having all the hardware and timing accuracies mentioned above gives us the potential to get extremely good georeferencing results.
- For UAS flight we need to align the INS fast. We do this by first flying a straight line for 30s, then flying an 8.

- Find offsets between the coordinate system of the camera and the coordinate system of the IMU.
- Needs at least 20 GCPs on the ground
- Only necessary to do this once.
- After you have the offsets, direct georeferencing is possible without GCPs.

- Pixel size of Mjolnir 1024 is approx. 0.02 degrees.
- For post processed INS data we can achieve 0.025 degrees roll/pitch accuracy, this is 125% of a pixel.
- On 100m altitude flights, the pixel size is 3.4cm, with post processed GPS data you can achieve down to 2cm absolute accuracy.
- So the errors we are getting is on pixel level.

- We supply Mjolnir-1024 as a complete package with APX-15 INS solution and the Camflight UAV.
- Mjolnir is a generic system and can be interfaced to any navigation system (only requirement is an event input). The event can even be divided down by a customized value if the navigation system cannot handle the full rate.
- It should also be compatible with most UAVs that can lift the weight of Mjolnir.
- Via a breakout cable, all outputs from the mission computer is available.
- The battery is galvanically isolated from all the electronic inside Mjolnir. There is a lot of filtering being done to be sure that there is no noise inside Mjolnir.
- Removing ripple on the voltage will also increase the lifespan of the LiPo batteries.

Link options:

- TCP/IP link
- HD Video link + serial link
- Only serial link.

HySpex UAV softwares HySpex AIR peed: Camera framerat control HySpex AIR **HySpex Remote** Change camera settings · Realtime UAV position on map, with recording status

Status message:

- IsRecording
- Cameras detected
- Integrationtime
- Framerate
- Last INS
- Is logging INS(status)
- Session status
- Session name

Commands:

- Start_session
- Get_status
- Start_acq.
- Stop_acq.
- Get_camera
- Get_integrationtime Get_frameperiod
- Set_frameperiod
- Set_integrationtime
- Get_speed
- Get_position
- Get_altitude
- Get_number_of_cameras
- Get_available_binning
- Get_available_aperture
- Set_binning
- Set_aperture_option
- Get_current_state
- Start_preview
- Stop_preview

Preview:

- Grayscale 200pix
- RGB 200pix

Airborne/UAV processing chain

Virtual Cockpit

- Flight planning
- **UAV** operation
- Payload control

Sim: N/C, Dev: N/C

Real-time processing software for airborne applications

- Real time georeferencing and visualization
- Real time classification: CRX, PCA, MNF
- A goal in the long run is to implement custom algorithms to make real-time classified maps, real-time "target" detection, real-time indices maps etc.
- RTGEO was tested successfully already in 2013, we have one beta customer using it in Germany
- Our goal is to include this software in the UAV package.

- Mjolnir-1024 is a state of the art scientific grade hyperspectral imaging system designed specifically for UAVs.
- Based on NEO's more than 20 years experience in hyperspectral imaging
- High quality components and rigorous testing ensures optimal performance
- Demo data set available for evaluation, contact me and I will send you ftp info.

Questions/comments?

Contact info: <u>trond@neo.no</u>, <u>hyspexsales@neo.no</u>

- Visit <u>www.insidegnss.com/webinars</u> for a PDF of the presentations and a list of resources.
- Review the recorded version of today's webinar

Contact Info:

- Inside GNSS- www.insidegnss.com
- Applanix www.applanix.com/
- Mohamed M.R. Mostafa- Mostafa@navmatica.com
- Mike Hogan- mike@avyon.com
- Trond Løke- trond@neo.no, hyspexsales@neo.no

Poll #3

Having attended today's webinar, my plans to purchase or acquire a GNSS-inertial solution:(please select one)

- a. Increased
- b. Was just researching but now intend to purchase
- c. Was just researching but now see no need
- d. Decreased

Ask the Experts – Part 2

Mohamed M.R. Mostafa Chief Technology Officer Navmatica Corporation

Mike HoganBusiness Development Manager
Avyon

Trond LøkeChief Technology Officer
Hyperspectral Group

Joe Hutton, MASc
P.Eng, Director
Inertial Technology and Airborne
Products

Inside GNSS @ www.insidegnss.com/ www.applanix.com/

Thank you!

