sponsored by

inside unmanned systems

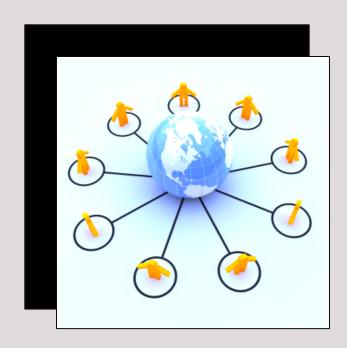
HIGH-PRECISION APPLICATIONS OF UAVS

Wednesday, February 24, 2016

WELCOME TO High-Precision Applications of UAVs

Dr. Steven Waslander Assoc. Professor, Department of Mechanical and Mechatronics Engineering University of Waterloo

Bastien Mancini Founder & Managing Director delair tech


Francois Gervaix Product Manager Surveying senseFly

Co-Moderator: Lori Dearman, Sr. Webinar Producer

Who's In the Audience?

A diverse audience of over 850 GNSS and unmanned professionals registered from 54 countries, 29 states and provinces representing the following categories:

- 25% Professional User
- 17% System Integrator
- 14% Product/Application Designer
- **14% GNSS Equipment Manufacturer**
- 30% Other

Welcome from Inside GNSS

Welcome from *u-blox*

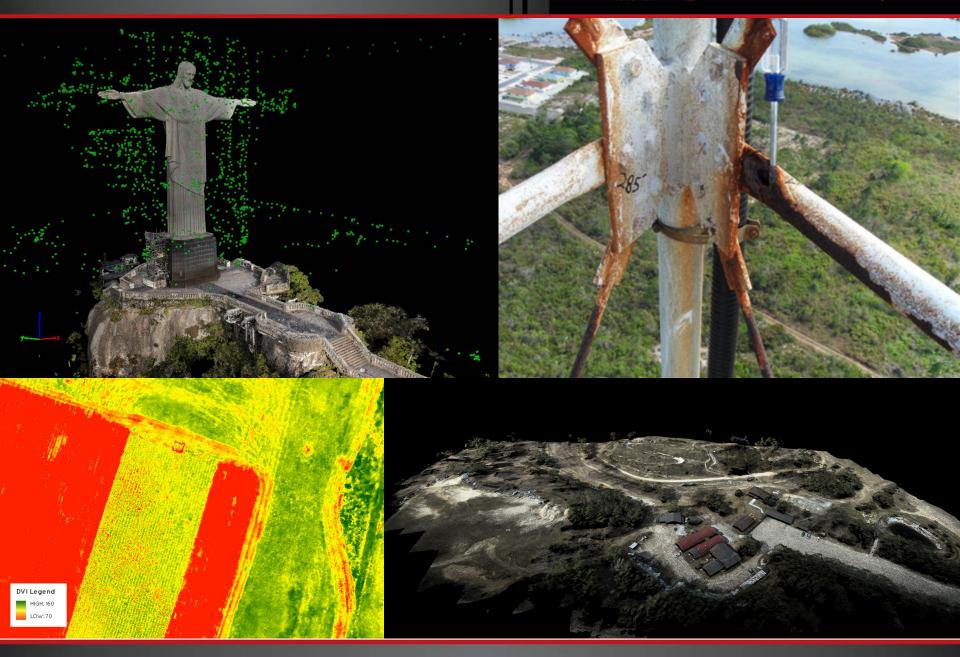
Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty University of Minnesota

Poll #1

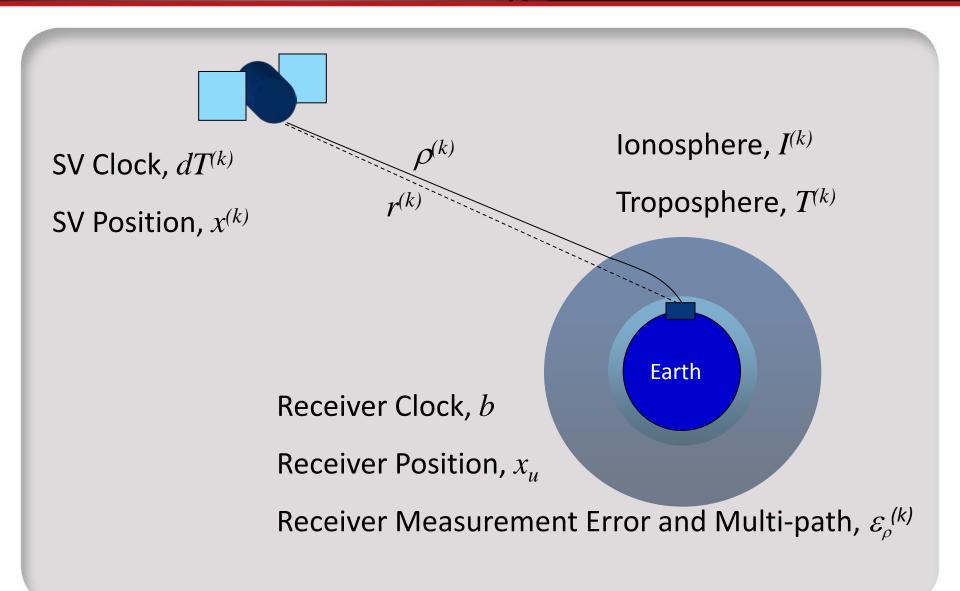
For your small UAV operations the centimeter level precision afforded by Real Time Kinematic (RTK) GNSS is: (Please select one)

- An absolute necessity.
- An unnecessary luxury.
- Too crude (Not good enough).
- A myth.

Robust and Precise Positioning for UAVs


Steven L. Waslander Associate Professor University of Waterloo

UAV Inspection and Mapping Markets



Inside GNSS unmanned systems

Code Phase Position Fix Measurement Equations (1) blox unmarried systems

• Nonlinear measurement model of pseudorange measurement, $\rho^{(k)}$, in meters from k^{th} satellite to user receiver, u

Range Clocks Atmospheric Other
$$\rho_u^{(k)} = \left\| \boldsymbol{x}^{(k)} - \boldsymbol{x}_u \right\| + b - c \left(dT^{(k)} \right) + I^{(k)} + T^{(k)} + \varepsilon_\rho^{(k)}$$

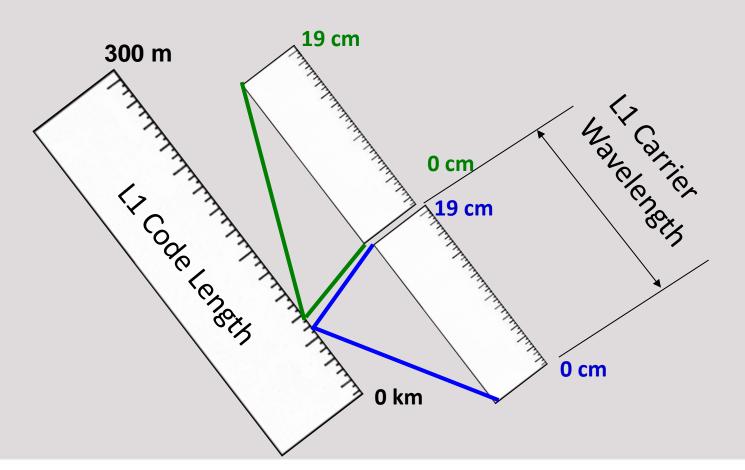
- Nonlinear least squares (NLLS) estimation used
 - Combine pseudorange measurements to form an estimate of receiver position and clock bias (four unknowns)
- Can be augmented to use Extended Kalman Filter if motion model known
 - Many GNSS receivers include options for walking, car, aircraft etc.
 - Many also include channels to integrate inertial measurements, wheel odometry

Error Source	User Equivalent Range Error - UERE (m)		
Signal arrival C/A (civilian)	±3		
Signal arrival P(Y) (military)	±0.3		
Ionospheric effects	±5		
Ephemeris errors	±2.5		
Satellite clock errors	±2		
Multipath distortion	±1		
Tropospheric effects	±0.5		
UERE Total (RMS)	6.7 (m)		

- UERE Error in a range measurement from satellite to receiver caused by a particular error source.
- Can be converted to position estimate standard deviation by multiplication by Position Dilution of Precision.

- Through a national/global network of reference stations
 - Track Ionospheric and Tropospheric errors, clock and ephemeris
- Through a network of geosynchronous satellites
 - Broadcast correction models to remove errors
- Challenge remains with tropospheric correction, too local and rapidly varying to model accurately

SBAS systems


OmniStar MSV coverage and base stations

- Its possible to track the carrier phase of GPS signal along with code phase and use it to improve position accuracy
 - Higher frequency, shorter wavelength, higher precision measurements

Carrier phase measurement equation

Range

Clocks

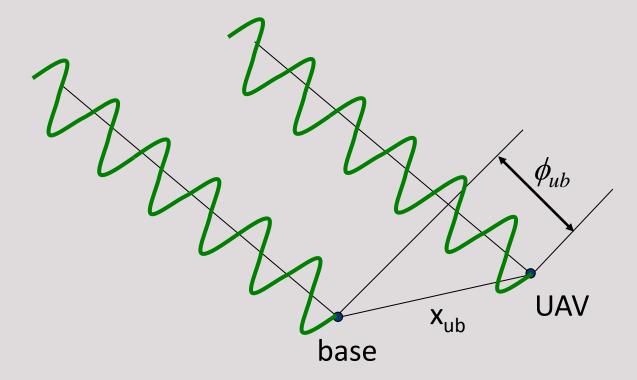
Atmospheric

Integer **Ambiguity** Other

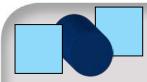
$$\lambda \phi_u^{(k)} = \|x^{(k)} - x_u\| + b - c(dT^{(k)}) + I^{(k)} + T^{(k)} + \lambda N_u^{(k)} + \varepsilon_c^{(k)}$$

- Measurement precision of millimeters
- Error sources in meters
- Integer wavelengths to satellite, N,, unknown
 - Not an issue for code phase, 300 m wavelength
 - Major issue for carrier phase, 19 cm differences lost in measurement errors

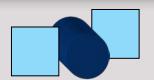
Double Difference Technique

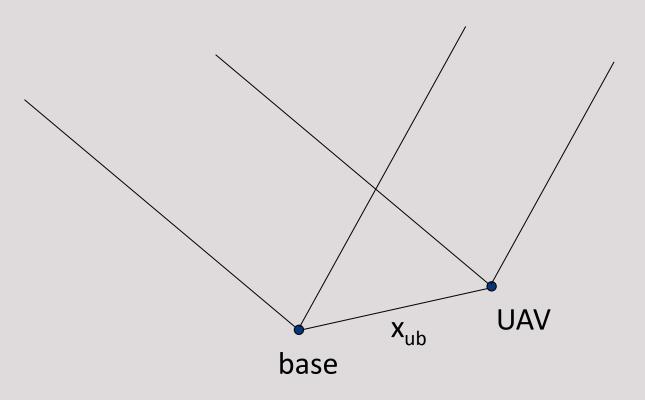


Single Difference Geometry

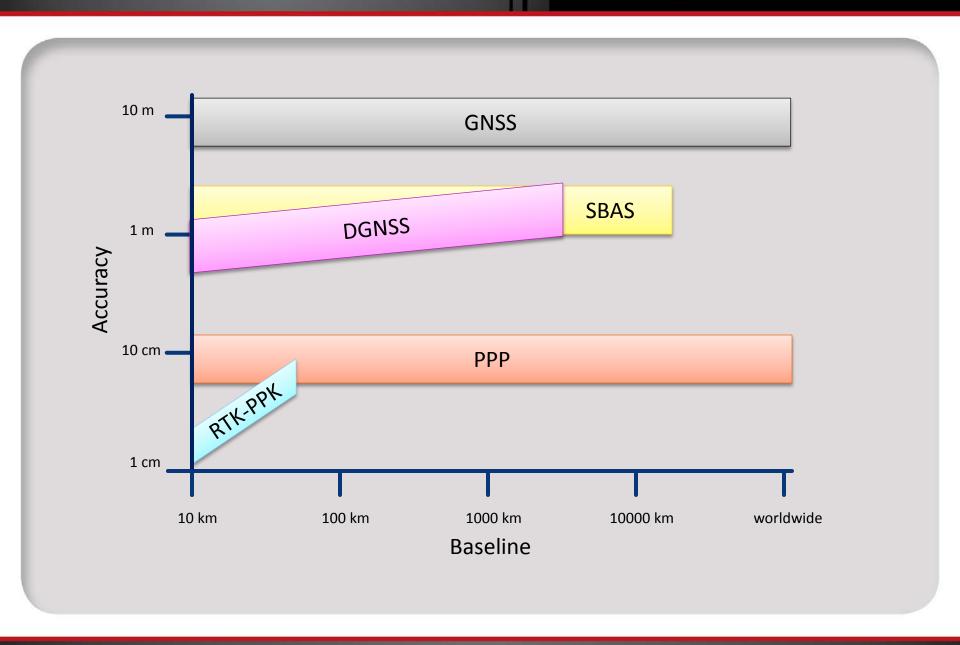

Single Difference removes Iono, Tropo, SV Clock, but adds base clock error

Double Difference Technique



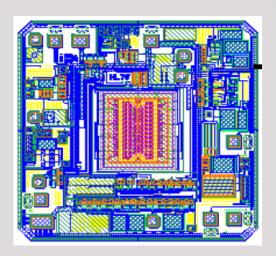


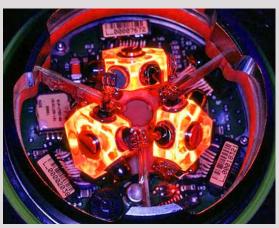
Double Difference Geometry


- Double difference also removes base clock error
 - Useful technique, leads to 1-2 cm position error for methods like RTK, PPS

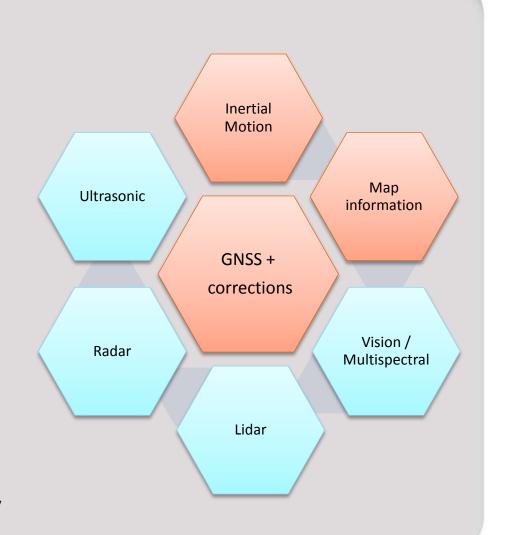
- Employ the double difference technique and integer ambiguity resolution to determine positioning solution
 - RTK: Real-time kinematic solutions available onboard the vehicle
 - Relies on extended Kalman filtering for real-time updates
 - Requires a communication link from a base station to send updates @ 30-60 seconds
 - If connection lost, revert to PPP/SBAS
 - PPK: Post-processed kinematic solutions are applied offline
 - Can take advantage of smoothing, instead of filtering alone
 - No communication required, simply record measurables on both vehicle and ground
 - High quality GPS solution not available for flight control
- Because corrections depend on a single ground station, benefit degrades as a function of distance traveled

GPS Correction Method Accuracies





- A major error source of all mapping and inspection tasks is camera orientation estimation
 - Explosion of MEMS devices, continuously improving accuracy (1-3000 °/hr)
 - Gyroscopes for rotation rates
 - Accelerometers for acceleration.
 - Magnetometers for magnetic field vector
 - High end includes Ring Laser and Fiber Optic Gyroscopes (0.0001 – 0.1 °/hr)
 - RLG measures accumulated rotation directly
 - FOG measures rate, but very accurately through many cable turns
- Tight coupling of GNSS and INS allows major improvements to complete solution
 - Tracking, integer ambiguity resolution, measurement fusion and estimation accuracy



- All sensor data onboard a vehicle can be fused in the same manner
 - Absolute measurements directly measure pose of vehicle or its rate of change
 - GNSS, IMU, Map data
 - Relative measurements are between the vehicle and the environment
 - Vision, Lidar, Radar, Ultrasonic
- Fusion is comprised of two pieces
 - Determining validity of individual measurements
 - Combining all valid measurements so as to minimize state uncertainty

Drone & Data

Solution for utility and industry

Bastien Mancini
Founder and Managing Director
delair tech

Inside GNSS unmanned systems

FOUNDED IN 2011 - BASED IN TOULOUSE

50 Employees - 2M€ CA

STRONG FINANCIAL AND R&D PARTNERSHIP

DT18 - the only BVLOS mini-drone

Since 2012

• Wingspan/length: 1.8 m/1.2 m

• Cruise speed: 60 km/h

• Communication range: up to 20 km

• Flight altitude Ceiling: up to 3,000 m ASL

• Deployment: Less than 5 minutes

Operational temperatures -20°C to +50°C

100 km: range

2 hour: endurance

2 kg: weight

Launch: hand or catapult

PPK: option

3G: option

For? Linear Infrastructure

Monitoring

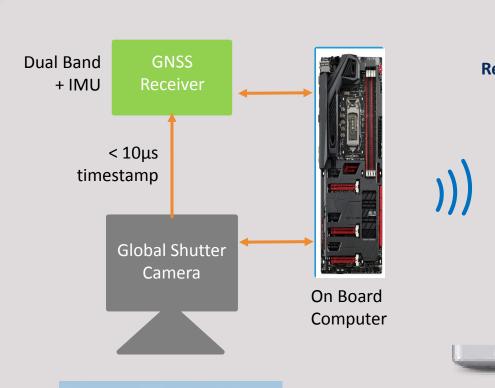
Precision Agriculture

Geographic Information

Systems (GIS)

Financed by the French Ministry of Defence

- Wingspan/length: 3,3 m/1.6 m
- Cruise speed: 50 km/h
- Communication range: up to 20 km
- Flight altitude Ceiling: up to 4 000m
- Deployment: 10 minutes
- Operational temperatures:
 - -20°C to +50°C

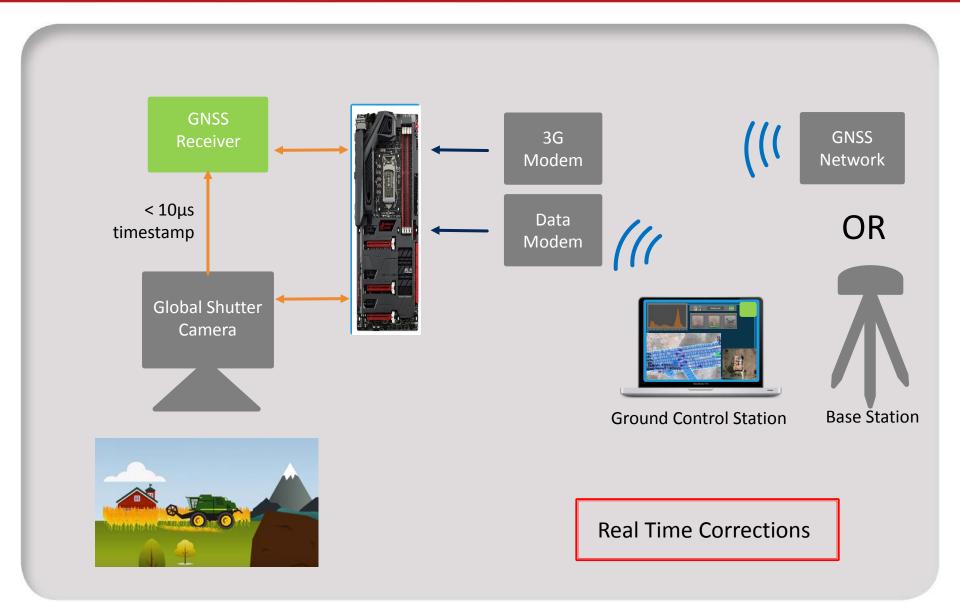

150 km: range (3hours)
2,5 hour: endurance
50 km2: mapped
per flight
15 kg: weight
Launch: by catapult

For? Surveillance and
Reconnaissance
Linear Infrastructure
Monitoring
High Value added
sensors

Real Time Histogram

Real Time Fix Status

Real Time Footprint


Real Time Pictures

Real Time Quality Check = Pictures + Navigation Data

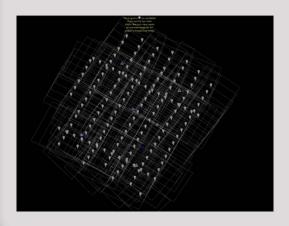
Inside GNSS unmanned systems

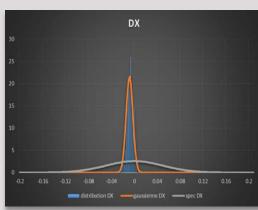
Accuracy for Efficiency

ON BOARD

	X	Y	Z
Mean (cm)	0	0	0
Sigma (cm)	0.6	0.6	0.9
RMS (cm)	0.6	0.6	0.9

ON GROUND


	X	Υ	Z
Mean (cm)	-0.5	-1.1	7.3
Sigma (cm)	1.3	2.7	5.5
RMS (cm)	1.3	2.7	8.9



High Accuracy IMU:

- 0.025° Roll & Pitch
- **0.080°** Yaw

Less Overlap (< 50%) More Area Covered

No need for GCPs **Faster Operations**

Ask the Experts – Part 1

Dr. Steven Waslander Assoc. Professor, Department of Mechanical and Mechatronics Engineering University of Waterloo

Bastien Mancini Founder & Managing Director delair tech

Francois Gervaix Product Manager Surveying senseFly

Poll #2

Primary demand for RTK's performance in small UAV applications comes from:
(Please select one)

- Precision agriculture users
- Construction industry users
- Mining industry users
- Mapping and surveying
- Infrastructure inspection

Drone & Data

Solution for utility and industry Part II

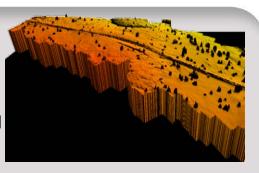
Bastien Mancini
Founder and Managing Director
delair tech

Acquaresi mining site Sardinia Italy

Old mining site frequent landslide

European Commission Copernicus Program

GSD - 4.3 cmAccuracy – 10 cm 10 km² - 2 flights



Inside GNSS unmanned systems

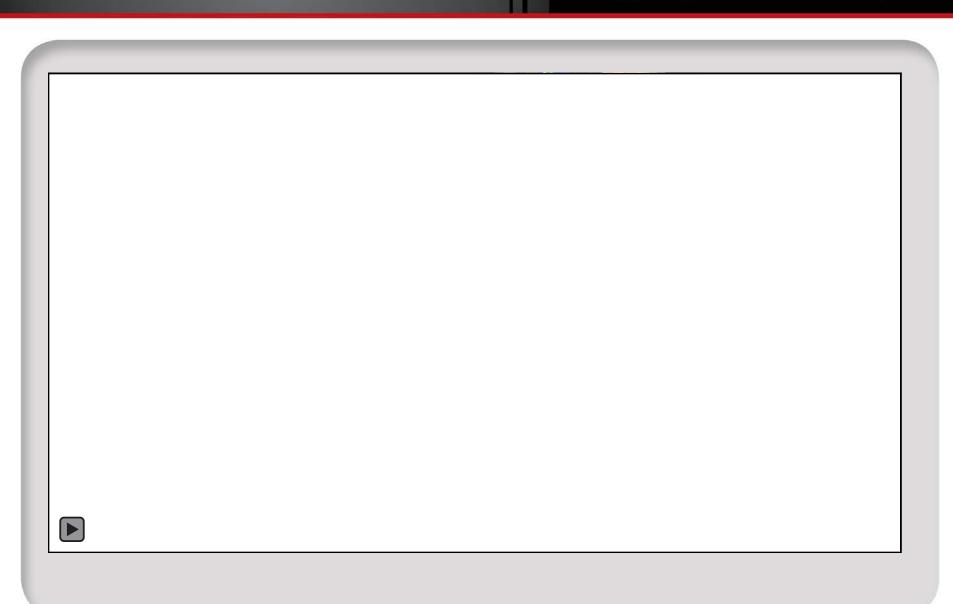
Orthophoto, 5cm

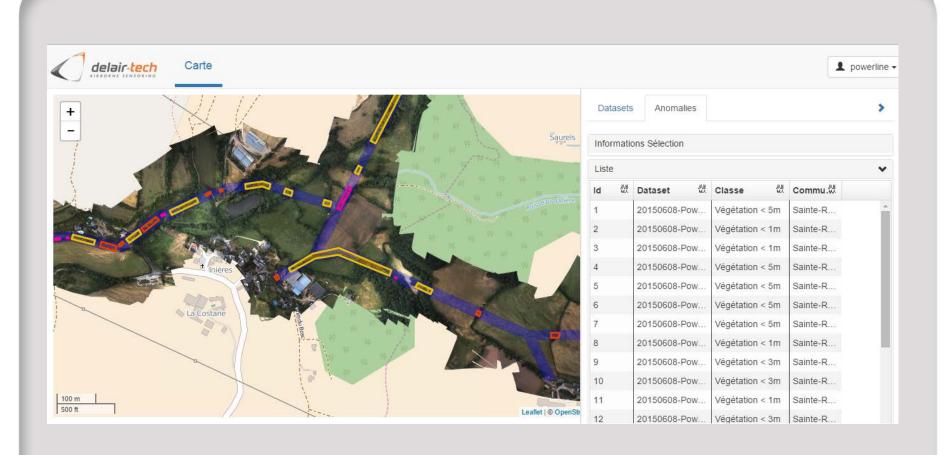
DSM, DTM

Resolution up to 5 cm / pixel

Digitizing

Topography **DXF**





Powerline

Objective - Automatic detection of potential hazards & anomalies in proximity to the pipeline.

Operations

- 38 km of pipeline
- 1 flight, 40 minutes
- 2,000+ photos generated

Algorithm processing **Detection of various** annmalies

Deliverable

Web-based georeferenced map on detected anomalies with infos

Report 1 page per hazard, with GPS coordinates name of the area **Identified** anomaly

Tracking function

DT-26X UAV DT-EYE XL sensor

Night Vision

DT-26X UAV **DT-EYE XL sensor**

Performance

HFOV: 2°

Distance: 785m

Performance

HFOV: 3.4°

Distance: 1298m

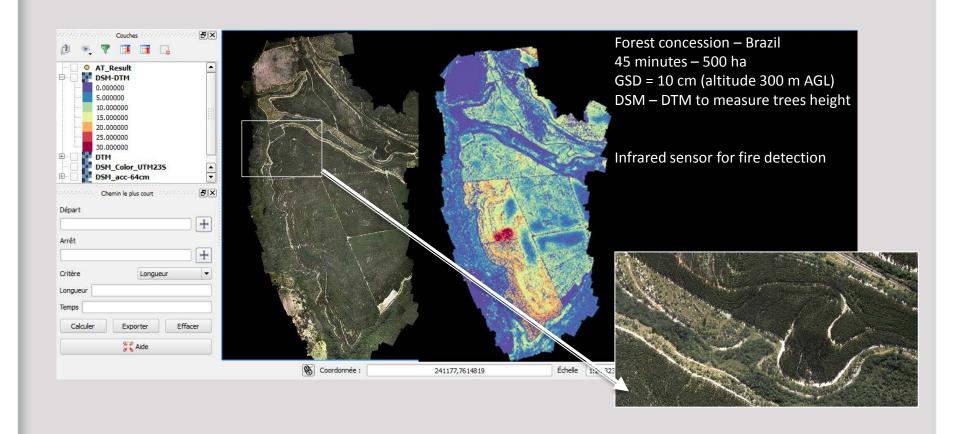
Performance

HFOV: 1.7°

Distance: 1347m

Stabilization

Mobile objects Detection



Inside GNSS unmanned systems

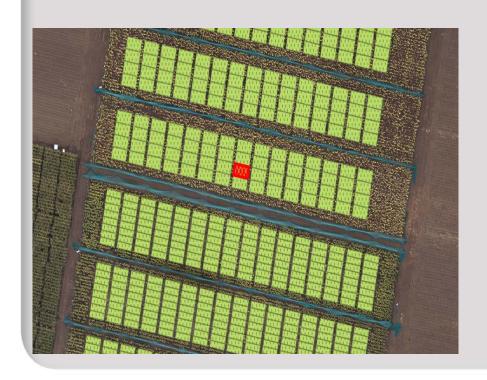
Precision Agriculture

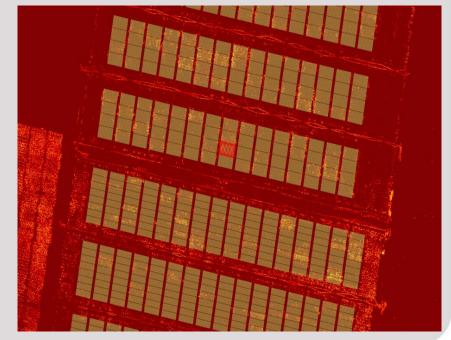
Multispectral data collection: R + G +B + NIR +

RedEdge

Plants counting

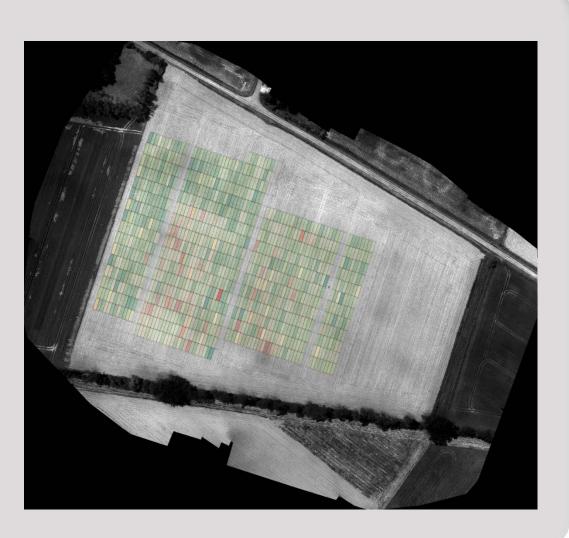
Chlorophyl emission


Yield estimation


Early health diagnosis

Hydric stress

SGS Nvirocrop in South Africa Using the DT18 UAV and DT-5Bands sensor Since june 2015



Inside GNSS unmanned systems

Sunflower Seeds

Delair-Tech Technology

COMING SOON

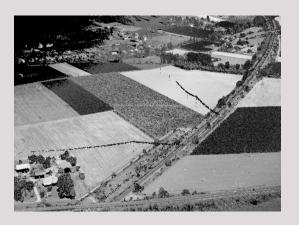
SENSOR

COMPATIBILITY

STRENGTHS

WHAT FOR?

APRIL 2016

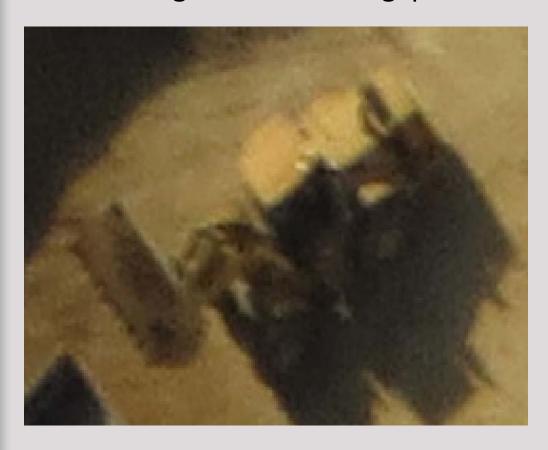

LIDAR (Riegl Technology)

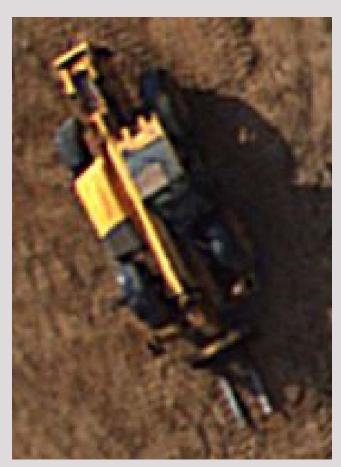
1,5 hours endurance 350,000 measurements/sec Range accuracy: 10

mm

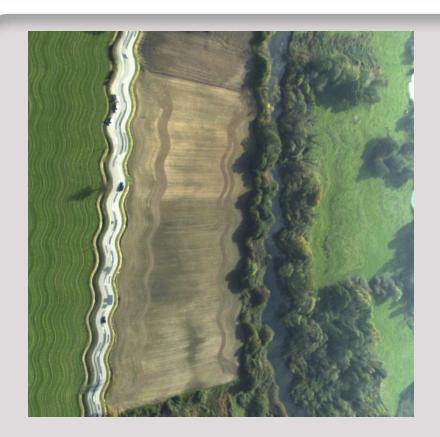
SEPT 2016

Hyperspectral


640 Spatial lines 270 spectral bands **Environmental protection Mining Exploration** Precision agriculture **Forestry Reef Survey**



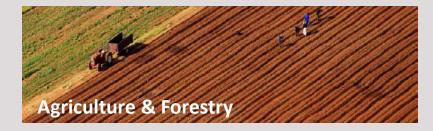
Which image has more Megapixels?

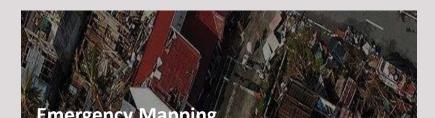

20 Mpix Consumer Camera

5 Mpix DT-3Bands

Markets & References

AFRICA LOGISTICS





TRAPIL

Delair-Tech SAS

395 route de Saint Simon 31100 Toulouse, France contact@delair-tech.com

http://www.delair-tech.com

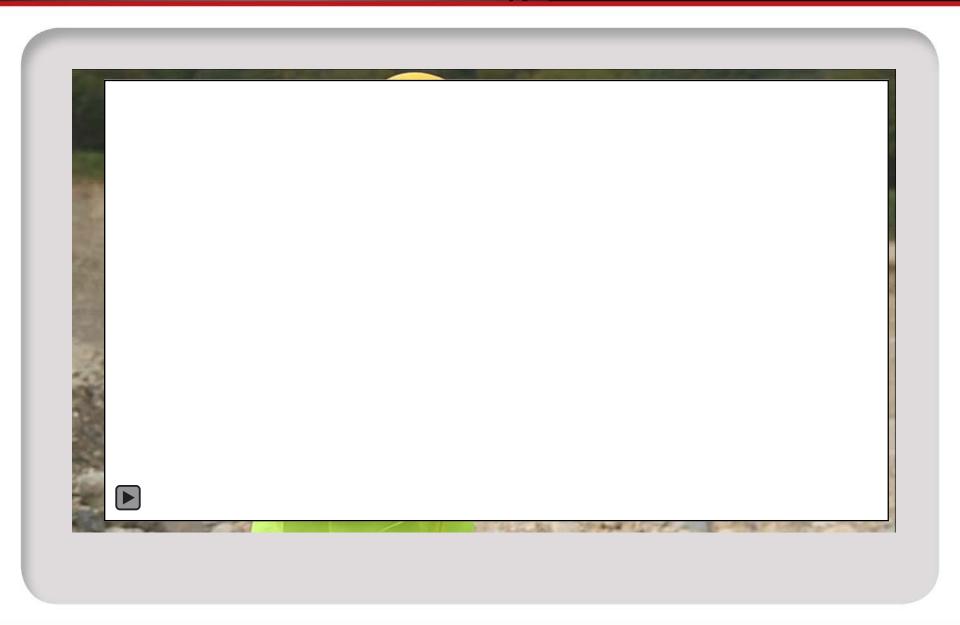
eBee RTK

Francois Gervaix
Product Manager
Surveying
senseFly



- A team of **over 120** passionate people
- **100-200** units/month
- **#1** in fixed-wing mapping drones (worldwide unit sales)
- Very light UAS (0.5kg to 1.5kg), inherently safe, fail-safe behaviors
- Fully automated (with eMotion)

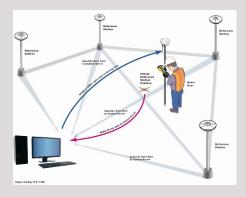
Drones eBee/ eBee Ag/ eBee RTK/eXom


eMotion Flight planning & control

- Built-in RTK-capable GNSS antenna (GPS, GLONASS L1 and L2)
- In-flight application of RTK corrections to geotags
- Ability of eMotion to receive corrections via VRS
- Post-processing engine in eMotion to correct the absolute base position (using Rinex data)

Geotag accuracy: 2 cm horizontal / 3 cm vertical Processed project accuracy: 1-3 x GSD (without GCPs!)

Note: The position measurements are all done in WGS84 (when using a base station) (the datum and coordinate system can be changed in Postflight Terra 3D)


Standalone:

Local base, known point:

Virtual Reference Station:

Local base, unknown point:

Rapid Static surveying

- GNSS accuracy guaranteed in field, right before flight
- Same software & modem for a stand-alone or a RTK supported mission
- No additional work or software
- "Job done" confidence when returning to the office

= airborne RTK a must

Creating a dataset with Ground Check Points (GCkP)

Number of GCkPs: 19 over an area of 0.2 km²

Device: Double-frequency GPS/GLONASS receiver

Correction Source: swisstopo's Automated GNSS Network for Switzerland (AGNES)

(Accuracy: 5 mm horizontal / 10 mm vertical)

eBee RTK Accuracy Assessment

Flights

	Flight 1	Flight 2
Purpose	Test the maximum accuracy	Impact of adverse lighting and weather
RTK Source	VRS	VRS
Area	20 ha (0.2 km²)	20 ha (0.2 km²)
GSD	2.5 cm/px (81 m/ATO)	5 cm/px (162 m/ATO)
Overlap	80% lateral, perpendicular	80% lateral
Conditions	Sunny	Low light, wind speed 9 m/s

eBee RTK Accuracy Assessment

Results:

Point Cloud (optimal conditions)

	X (mm)	Y (mm)	Z (mm)
Mean error	8	1	-23
Standard deviation	19	15	21
RMSE	20	15	31
RMSE XY	26		

→ Accuracy: 2.6 cm horizontal & 3.1 cm vertical

10% correction uplink lost

	X (mm)	Y (mm)	Z (mm)
Mean error	15	-1	-46
Standard deviation	18	15	16
RMSE	23	15	48
RMSE XY	28		

Accuracy: 2.8 cm horizontal & 4.8 cm vertical

Orthomosaic & DSM:

	X (m)	Y (m)	Z (m)
Mean error	2	-5	-23
Standard deviation	22	23	26
RMSE	23	23	35
RMSE XY	33		

→ Accuracy: 2.6 cm horizontal & 3.1 cm vertical

Point Cloud (adverse conditions)

	X (mm)	Y (mm)	Z (mm)
Mean error	-45	-69	-49
Standard deviation	19	29	46
RMSE	49	75	70
RMSE XY	89		

→ Accuracy: 8.9 cm horizontal & 7.0 cm vertical within 1-3 x the GSD (5 cm / px)

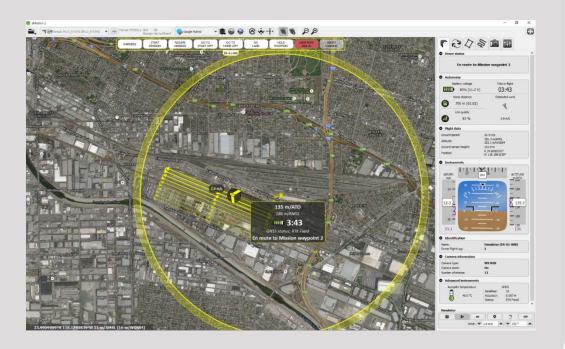
Scope

 Provide an aerial survey of a 400m wide corridor along the 250km Talawana Access Track (Western Australia)

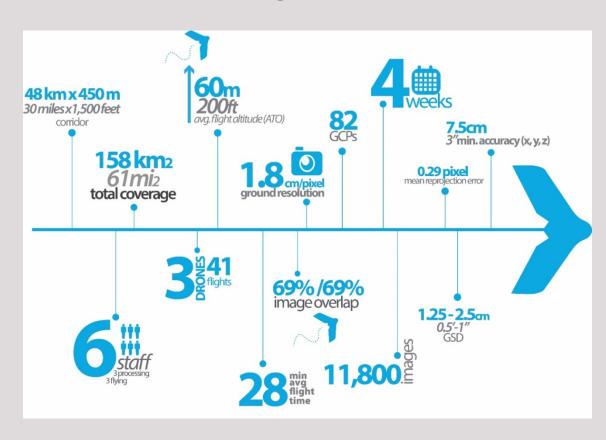
Deliverables;

- 3D co-ordinated data with accuracy to +/-100 mm
- Contoured topographic data
- Orthomosaic photos to 5 cm resolution
- Digital model with 1m x 1m grid of 3D points

- Control observed using GPS equipment logging data to post process using Geoscience Australia AUSPOS software
- Only three existing Standard Survey Marks available to make connection along the 250 km corridor
- Corridor divided into 15 km sections
- RTK base station established at the middle of the section over a new established control station
- Existing road was surveyed every 20 m using RTK GPS and Ground Control Points (GCPs) established every 2 km


Californian high-speed rail route

- JL Patterson, transportation engineering company
- First professional drone deployment
- 30-mile rail corridor with an eBee RTK
- Reported "phenomenal" data accuracy
 - Completed the job in **a** quarter of the time of terrestrial surveying and half the cost of employing manned aerial services.



- "Traditional surveying would have required lengthy permits to access the railroad rightof-way and constant interruptions due to train traffic"
 - RTK reduces drastically the amount of work on the ground
 - Since mapping its first rail corridor, JLP has put its eBee RTKs to work on a range of subsequent projects, achieving similarly impressive outcomes.

■ Why RTK?

- Compatible with existing base stations
 - The eBee RTK is compatible with most leading brands of base station, working seamlessly alongside your existing portfolio of instruments
- Fully integrated workflow
 - The eBee RTK's supplied flight planning & control software (eMotion) connects to the base station and broadcasts correction data to the rover (eBee RTK) no additional logger or third-party software required.
- Survey-grade accuracy
 - Absolute orthomosaic & digital surface model accuracy of down to 3 cm (1.2 in) without the need for GCPs meaning less time spent in the field and high precision in even the most inaccessible areas.

- Visit www.insidegnss.com/webinars for a PDF of the presentations and a list of resources.
- Review the recorded version of today's webinar

Contact Info:

- Inside GNSS- www.insidegnss.com
- u-blox www.u-blox.com/en

NEO-M8P is high precision for the mass market

• Affordable cm-level GNSS module

- Integrated Real Time Kinematic (RTK)
- Small and light
- Energy-efficient

https://www.u-blox.com/en/product/neo-m8p

Poll #3

Having attended today's webinar, my plans to purchase or acquire GNSS RTK has (please select one)

- Increased
- Was just researching but now intend to purchase
- Was just researching but now see no need to purchase
- Decreased

Ask the Experts – Part 2

Dr. Steven Waslander Assoc. Professor, Department of Mechanical and Mechatronics Engineering University of Waterloo

Bastien Mancini Founder & Managing Director delair tech

Francois Gervaix Product Manager Surveying senseFly

Mårten Ström Senior Principal, Product Management at u-blox

Inside GNSS @ www.insidegnss.com/ www.u-blox.com

Thank you!

