
GNSS Solutions • July/August 2014
GNSS Position EstimatesShare via: Slashdot Technorati Twitter Facebook Q: How do measurement errors propagate into GNSS position estimates? A: Not surprisingly, GNSS positioning accuracy is largely dependent on the level of measurement errors induced by orbital inaccuracies, atmospheric effects, multipath, and noise. This article discusses how, specifically, these errors manifest as position errors.
Estimating a Position Equation (1) (see inset photo, above right, for all eqautions) where h(•) is the measurement model — assumed, for convenience, to be nonlinear — and (⃗v) is the vector of measurement errors. This equation is linearized to yield Equation (2) where ⃗x_{0} is the current estimate of the state vector (point of expansion), δ⃗x is the error of ⃗x_{0} relative to the (unknown) true states, H is the Jacobian matrix (also called the design matrix, observation matrix, or geometry matrix), and δ⃗z is the misclosure vector, which is the difference between the true measurements (⃗z) and the measurements estimated from the current states (i.e., h(⃗x_{0})). The wellknown solution to equation (2) is as follows: Equation (3) where R is the covariance matrix of the measurement errors. The initial state estimates are then updated as follows Equation (4) Because the model is nonlinear, we can use iteration to converge to the final solution.
Role of GNSS Errors Equation (5) where ⃗P is the vector of pseudoranges from all satellites in view, ⃗ρ is the vector of geometric distances between the receiver and the satellites, b is the receiver clock error (common across measurements), and ⃗v is the aggregate measurement error from all error sources. Although we aggregate all of measurement errors together, individual components (e.g., troposphere) could be separated and easily worked through the following development. Let us now consider the specific case where the initial state estimate was perfect such that ⃗x_{0} = ⃗x. Although this is an unrealistic scenario (if you knew the true position in advance, you do not need GNSS!), it serves as a useful illustration of how measurement errors affect the final solution. Furthermore, since the leastsquares approach will yield the same position estimate for all reasonable initial state estimates (in this case, “reasonable” would include a position accurate to at least 1,000 kilometers), this scenario is not limiting. For the assumed case, the true value of δ⃗x is zero. It follows that if the value estimated from equation (3) differs from zero, this actually represents the error in the estimated states. To obtain a more explicit equation, we first compute the misclosure vector as follows Equation (6) In other words, the misclosure vector contains the measurement errors only. Finally, substituting this result into equation (3) gives Equation (7) Equation (7) shows how measurement errors propagate into the final solution. Although the equation is relatively simple, there is no hardandfast rule for describing how this happens. Rather, we can only say that two key things determine the effect of measurement error on the final solution: the relative measurement accuracy reflected in R, and the measurement geometry as reflected in the Jacobian. Before looking at these aspects in more detail, note that equation (7) shows the effect on all state estimates separately (i.e., as a vector). This is important because some applications may be more interested in certain parameters than in others. For example, aviation is more sensitive to vertical positioning errors than horizontal positioning errors. In contrast, timing applications are not concerned at all with the position states.
Measurement Accuracy Of course, because the user (or perhaps software programmer) is responsible for selecting the covariance model, careful decisions need to be made in this regard; otherwise results will be suboptimal.
Measurement Geometry Equation (8) where ⃗u_{i} is the unit vector pointing from the receiver to the ith satellite. The distribution of all satellites relative to the user reflects the measurement geometry. This is often quantified using dilution of precision (DOP) values. To illustrate the importance of measurement geometry, consider Figure 1 (inset photo, above right), which shows two measurement scenarios for a twodimensional positioning problem. In both cases, the receiver (blue) is measuring ranges (not pseudoranges) from the transmitters (red). Each transmitter is assumed to have an error of one meter, and all measurements are given equal weight (i.e., same variance). The distribution of transmitters appears to be relatively similar; only one transmitter is moved (mirrored across the yaxis). Nevertheless, this small difference in measurement geometry results in different position errors. Similar examples can be developed for the threedimensional case, but this is more complicated to draw and is omitted here. Unfortunately, users cannot place satellites to optimize measurement geometry. The best that can be done is to use missionplanning utilities to collect data during parts of the day where geometry is best (in the area of the data collection). Of course, using receivers that track satellites from multiple GNSSs will inherently improve the geometry too.
Estimating Clock Errors In particular, although we name the state the “clock error,” the estimated value will include the true clock error along with anything that appears to be common across all satellites. With this in mind, if we repeated the previous examples using pseudoranges (thus requiring the clock error to be estimated), the fact that all measurements were assumed to have a onemeter error means that the leastsquares estimator could not separate the true clock bias from the common error. The result would be that the clock error estimate would be biased by one meter (in this case), but the position error would actually be zero!
Different Types of Errors Measurement blunders would also be considered systematic errors. In fact, equation (7) is used when assessing the reliability and integrity of a positioning system in the presence of blunders. Random errors such as multipath and noise, however, are usually treated a bit differently. Specifically, these errors are usually well characterized by their standard deviation only (i.e., no bias), meaning their effect can be completely reflected in the measurement covariance matrix. If this is the case, the effect of these errors on the solution is directly obtained from the covariance matrix of the estimated parameters, which is computed as Equation (9) This is a byproduct of the law of propagation of variances. As before the result is affected by the measurement geometry and the measurement accuracy.
Summary Copyright © 2018 Gibbons Media & Research LLC, all rights reserved. 
